Thermodynamic analysis of using compressor in absorption heat transformers with ammonia-lithium nitrate and ammonia sodium thiocyanate as working fluids

Authors

1 Faculty of Mechanical Engineering, University of Tabriz, Tabriz , Iran

2 Department of Mechanics, Azarbaijan Shahid Madani University

Abstract

In this article, three configurations of using compressor in absorption heat transformers are introduced and analyzed thermodynamically and compared with simple configuration of them. Water-lithium bromide, ammonia-lithium nitrate and ammonia sodium thiocyanate solutions are used as working fluid in these systems. The results show that systems using water-lithium bromide as working fluid have lower delivered heat temperature, higher minimum generator and evaporator temperatures and higher possibility of crystallization occurrence than systems using ammonia-lithium nitrate and ammonia sodium thiocyanate fluids as working fluid. In addition, the results show that using compressor in absorption heat transformers increase the temperature of delivered heat, decrease the minimum temperatures of absorber and generator and increase PER, ECOP especially at high absorber temperature. Compared to the systems using ammonia-lithium nitrate, the systems using ammonia sodium thiocyanate starts to perform at lower generator and evaporator temperatures and delivers heat at higher temperatures, but they have lower primary energy ratio and second low efficiency except at high absorber temperatures.

Keywords


[1] سعید قوامی و همکاران (1397) تحلیل انرژی و اگزرژی و بهینه سازی یک سیستم تولید چندگانه با تلفیق سیکل‌های توربین گاز- راکتور هلیوم مدولار، تبرید جذبی، ریفرمینگ بخار آب و آب شیرین‌کن رطوبت‌زن-رطوبت‌زدا. مهندسی مکانیک مدرس 642-631 :(3)19.
[2] Abdolalipouradl M, et al. (2020) A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints. Energy 209: 118235.
[3] Abdolalipouradl M, et al. (2020) Thermodynamic and exergoeconomic analysis of two novel tri-generation cycles for power, hydrogen and freshwater production from geothermal energy. Energy Convers. Manag 226: 113544.
[4] Parham K, et al. (2014) Absorption heat transformers –A comprehensive review. Renew Sust Energ Rev 34: 430-452.
[5] Eisa M, et al. (1986) Thermodynamic design data for absorption heat transformers—part I. Operating on water-lithium bromide. J Heat Recov Sys 6: 421-432.
[6] Rivera W, et al. (2010) Exergy analysis of a heat transformer for water purification increasing heat source temperature. Appl Therm Eng 30: 2088-2095.
[7] Ishida M, Ji J (1999) Graphical exergy study on single stage absorption heat transformer. Appl Therm Eng 19:  1191-1206.
[8] Kurem E, Horuz I (2001) A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. Int Commun Heat Mass 28: 427-438.
[9] Farshi, LG, et al. (2014) First and second law analysis of ammonia/salt absorption refrigeration systems. Int J Refrig 40: 111-121.
[10] Best R, et al. (1990) Thermodynamic design data for absorption heat transformers—part four. operating on ammonia-lithium nitrate. Heat Recov Syst CHP 10: 539-548.
[11] Best R, et al. (1992) Thermodynamic design data for absorption heat transformers—Part 5. Operating on ammonia-sodium thiocyanate. Heat Recov Syst CHP 12: 347-356.
[12] Ferreira CI (1984) Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Sol Energy 32: 231-236.
[13] Hernández-Magallanes JA, et al. (2017) Comparison of single and double stage absorption and resorption heat transformers operating with the ammonia-lithium nitrate mixture. Appl Therm Eng 125: 53-68.
[14] Heard CL, et al. (2016) Characteristics of an ammonia/lithium nitrate double effect heat pump-transformer. Appl Therm Eng 99: 518-527.
[15] خلیلی س، گروسی فرشی ل (1396) تحلیل ترمودینامیکی پمپ حرارتی جدید ترکیبی- اجکتوری و مقایسه با پمپ حرارتی ترکیبی. مهندسی مکانیک مدرس 432-423 :(8)7.
[16] Dincer I, Kanoglu M (2010) Refrigeration systems and applications. 2nd edn. Wiley Online Library.
[17] Klein S (2013) Engineering equation solver (EES).
[18] Gilani S, Ahmed M (2015) Solution crystallization detection for double-effect LiBr-H2O steam absorption chiller. Energy Procedia 75: 1522-1528.
[19] Farshi LG, et al. (2018) Thermodynamic analysis of a cascaded compression – Absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery. Appl Therm Eng 128: 282-296.
[20] Jensen JK, et al. (2015) Technical and economic working domains of industrial heat pumps: Part 2 – Ammonia-water hybrid absorption-compression heat pumps. Int J Refrig 55: 183-200.
[21] Ommen T, et al. (2015) Technical and economic working domains of industrial heat pumps: Part 1 – Single stage vapour compression heat pumps. Int J Refrig 55: 168-182.