Using Collocation Discrete Least Squares Meshless method in solving governing equations for non-Newtonian fluids by Herschel- Bulkley model

Authors

Ph.D. Student/ Civil. Eng/ Semnan Univ/Semnan, Iran.

Abstract

Abstract
One of the meshless methods is Discrete Least Squares Meshless (DLSM) method in which, the nodal points are used for estimating the shape functions and discretization of equations. Collocation Discrete Least Squares Meshless (CDLSM) method is formed by adding points as collocation points which are used in discretization of equations. In this research, Radial Point Interpolation Method (RPIM) has been used to estimate the shape functions in solving governing equations of two-dimensional non Newtonian fluid. Herscel-Bulkley model is used to simulate rheological behavior of fluid. Verification tests are achieved by three experimental bebch marks such as flow between two parallel plates, lid driven square cavity and lid-driven arc-shape cavity for Re=100. Mean square error (MSE) is determined between the numerical and experimental results and conducted to 7.1×〖10〗^(-5), 1.3×〖10〗^(-6), 1.6×〖10〗^(-6) for the three mentioned problems, respectively. The computational time consumed for simulating the lid driven square cavity problem was 1000 seconds, respectively. Also, solving lid-driven arc-shape cavity problem for each iteration took 0.65 seconds, respectively.

Keywords


[1] Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Notices Royal Astron Soc 181(3): 375-389.
[2] Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. AJ 82: 1013-1024.
[3] Dilts GA (1999) Moving‐least‐squares‐particle hydrodynamics—I. Consistency and stability. Int J Numer Meth Eng 44(8): 1115-1155.
[4] Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech  22(2): 117-127.
[5] Lin H, Atluri SN (2001) The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations. Cmes-Comp Model Eng 2(2): 117-142.
[6] Wang JG, Yan L, Liu GR (2005) A local radial point interpolation method for dissipation process of excess pore water pressure. Int J Numer Method H  15(6): 567-587.
[7] Mai‐Duy N, Tanner RI (2005) Computing non‐Newtonian fluid flow with radial basis function networks. Int J Numer Methods Fluids 48(12): 1309-1336.
[8] Wang JG, Liu GR (2001) Radial point interpolation method for no-yielding surface models. In Proceedings of the first MIT conference on computational fluid and solid mechanics (538-540).
[9] Duan Q, Li X (2007) An ALE based iterative CBS algorithm for non-isothermal non-Newtonian flow with adaptive coupled finite element and meshfree method. Comput Methods in Appl Mech Eng 196(49-52): 4911-4933.
[10] Shamekhi A, Sadeghy K (2009) Cavity flow simulation of Carreau–Yasuda non-Newtonian fluids using PIM meshfree method. Appl Math Model 33(11): 4131-4145.
 [11] Hon YC, Šarler B, Yun DF (2015) Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface. Eng Anal Bound Elem 57: 2-8.
[12] شایان ا، دادوند ع، میرزایی ا (1394) شبیه سازی        عددی جریان خارجی لزج تراکم­ناپذیر با استفاده از روش لاتیس بولتزمن بدون شبکه. مجله مکانیک سازه‌ها و شاره‌ها 189-175 :(4)4.
[13] میکاییلی ص، بهجت ب (1395) تحلیل سه‌بعدی خمش ورق هدفمند ضخیم با استفاده از روش بدون المان گلرکین در شرایط مرزی مختلف. مجله مکانیک سازه‌ها و شاره‌ها 120-109 :(2)6.
[14] Oliveira T, Portela A (2016) Weak-form collocation–A local meshless method in linear elasticity. Eng Anal Bound Elem 73: 144-160.
[15] Zamolo R, Nobile E (2017) Numerical analysis of heat conduction problems on 3D general-shaped domains by means of a RBF Collocation Meshless Method. J Phys Conf Ser 923.
[16] Ahlkrona J, Shcherbakov V (2017) A  meshfree approach to non-Newtonian free surface ice flow: Application to the Haut Glacier d'Arolla. J Comput Phys 330: 633-649.
[17] Nodoushan EJ, Shakibaeinia A (2019) Multiphase mesh-free particle modeling of local sediment scouring with μ (I) rheology. J Hydroinformatics 21(2): 279-294.
[18] Kaennakham, S., & Chuathong, N. (2019). An automatic node-adaptive scheme applied with a RBF-collocation meshless method. Appl. Math. Comput, 348, 102-125.
[19] Ku CY, Xiao JE, Liu CY (2019) On Solving Nonlinear moving boundary problems with heterogeneity using the collocation meshless method. Water 11(4): 835.
[20] Arzani H, Afshar MH (2006) Solving Poisson’s equations by the discrete least square meshless method. WIT Trans Modelling Simul 42: 23-31.
[21] Firoozjaee AR, Afshar MH (2011) Steady‐state solution of incompressible Navier–Stokes equations using discrete least‐squares meshless method. Int J Numer Methods Fluids 67(3): 369-382.
[22] Lashckarbolok M, Jabbari E (2012) Collocated discrete least squares (CDLS) meshless method for the stream function-vorticity formulation of 2D incompressible Navier–Stokes equations. Sci Iran 19(6): 1422-1430.
[23] لشکربلوک م، نیکمهر ا، نوروزی ب، عابدینی ا (1394) تحلیل تنش‌های برشی ناشی از پیچش مقاطع منشوری با استفاده از روش بدون شبکه حداقل مربعات گسسته همپوش. مجله مکانیک سازه‌ها و شاره‌ها 54-47 :(4)5.
[24] Naghian M, Lashkarbolok M, Jabbari E (2017) Numerical simulation of turbulent flows using a least squares based meshless method. Int J Civ Eng 15(1): 77-87.
[25] Dalimunthe HS, Surana KS (1996) p-Version least squares finite element formulation for three-dimensional, incompressible, non-isothermal, non-Newtonian fluid flow. Comput Struct 58(1): 85-105.
[26] Bell BC, Surana KS (1994) p‐version least squares finite element formulation for two‐dimensional, incompressible, non‐Newtonian isothermal and non‐isothermal fluid flow. Int J Numer Methods Fluids 18(2): 127-162.
[27] Mercan H, Atalik K (2011) Flow structure for Power-Law fluids in lid-driven arc-shape cavities. Korea Aust Rheol J 23(2): 71-80.
[28] لشکربلوک م (1392) حل معادلات حاکم بر  حرکت دوبعدی سیالات غیرنیوتنی مستقل از زمان با استفاده از روش بدون شبکه حداقل مربعات گسسته همپوش. رساله دکترای مهندسی آب، مهندسی عمران، دانشگاه علم و صنعت ایران.