Performance optimization of organic Rankin cycle (ORC) based on comparative study of Box –Behnken and central Composite design methods

Authors

1 Department of Mechanical Engineering, Bam Higher Education Complex, Bam, Iran

2 Mechanical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, with the aid of thermodynamic modeling of Organic Rankin Cycle (ORC), the effect of some parameters on the thermal efficiency and input heat of ORC is examined using design of experiment method. By this technique, along with the Backward Elimination Regression model, the values of thermal efficiency and input heat of ORC are introduced as a function of effective parameters. For this purpose, first, by comparing the two methods of surface response and selecting the central composite design procedure, the values of response functions were computed based on the input variables. The numerical values derived from these functions resulting from RSM central composite design are in good agreement with published theoretical results in literatures. The results show that among the effective parameters, turbine inlet temperature values, turbine isentropic efficiency , and mass flow ratio have most significant effect on thermal efficiency and also for input heat to ORC the most effective parameters are flow rate of working fluid, condenser temperature and input temperature of ORC's turbine. In order to numerical optimization according to the operating conditions of real cycles based on the desirability function and the central composite design procedure, it was revealed that the thermal efficiency is close to 36% for the heat input of 130 kW.

Keywords


[1] Obernberger I, Thonhofer P, Reisenhofer E (2002) Description and evaluation of the new 1,000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat & Power 10(1): 18-25.
[2] Ferreira P, Catarino I, Vaz D (2017) Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification. Appl Therm Eng 121: 887-896.
[3] Saleh B, Koglbauer G, Wendland M, Fischer J (2007) Working fluids for low-temperature organic Rankine cycles. Energy 32(7):1210-1221.
[4] Habibzadeh A, Rashidi M (2016) Thermodynamic analysis of different working fluids used in organic rankine cycle for recovering waste heat from GT-MHR. JESTEC 11(1): 121-135.
[5]  Chacartegui R, Sánchez D, Muñoz J, Sánchez T (2009) Alternative ORC bottoming cycles for combined cycle power plants. Appl Energy 86(10): 2162-2170.
[6] شوکتی ن، رنجبر س­ف (1394)  تحلیل ترمودینامیکی و اگزرژواکونومیکی ترکیب سیکل تولید توان زمین گرمایی با سیکل کالینا و سیکل رانکین با سیال‌های آلی مختلف. مجله مکانیک سازه‌ها و شاره‌ها 192-177 :(1)5.
[7] Aboelwafa O, Fateen SEK, Soliman A, Ismail IM (2018) A review on solar Rankine cycles: Working fluids, applications, and cycle modifications. Renew Sustain Energy Rev 82: 868-885.
[8] چهارطاقی م، بابایی م (1393). تحلیل انرژی و اگزرژی    سیکل ارگانیک رانکین با به کارگیری سیال‌کاری دو جزیی    در شرایط مشخص منبع حرارتی. مهندسی مکانیک مدرس 156-145 :(3)14
[9] Badr  O, Probert S, O'callaghan P (1985) Selecting a working fluid for a Rankine-cycle engine. Appl Energy 21(1):1-42.
[10] Mahmoudi A, Fazli M, Morad M (2018) A recent review of waste heat recovery by Organic Rankine Cycle, Appl. Therm. Eng. 143: 660-675.
[11] باروتکوب ح ، حنیفی میانگفشه ک ، یاری م (۱۳۹۶) طراحی و تحلیل سیستم جدید سیکل رنکین آلی با محرک اولیه توربین گاز SGT-۴۰۰ مطالعه موردی: منطقه نار- کنگان (جنوب ایران). مهندسی مکانیک مدرس 372-361 :(12)17. 
[12] Wang X, Shu G, Tian H, Liu P, Jing D, Li X (2018) The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery. Energy 147: 440-450.
[13] Xi H, Zhang H, He YL, Huang Z (2019) Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment. Energy 172: 435-442.
[14]  Zeng M, Tang L, Lin M, Wang Q (2010) Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl Therm Eng 30(13): 1775-1783.
[15] Verma V, Murugesan K (2014) Optimization of solar assisted ground source heat pump system for space heating application by Taguchi method and utility concept. Energ Buildings 82: 296-309.
[16] Kumar U, Karimi M.N (2014) Application of Taguchi’s methods for optimizing organic rankine cycle for recovering low grade industrial waste heat. IJTEE 8(2): 91-101.
[17] Kumar U, Karimi MN, Asjad M (2016) Parametric optimisation of the organic Rankine cycle for power generation from low-grade waste heat. Int J Sustain Energy 35(8): 774-792.
[18] Mohammed MK, Awad OI, Rahman M, Najafi G, Basrawi F, Alla ANA, Mamat R (2017) The optimum performance of the combined cycle power plant: A comprehensive review. Renew Sustain Energy Rev 79: 459-474.
[19] Bademlioglu A, Canbolat A, Yamankaradeniz N, Kaynakli O (2018) Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods. Appl Therm Eng 145: 221-228.
[20] Goyal A, Sherwani AF, Tiwari D (2021) Optimization of cyclic parameters for ORC system using response surface methodology (RSM). Energ Source Part A 43(8): 993-1006.
[21] محمدی م، ارغوانی هادی ج (1395) مدل‌سازی یک‌بعدی و بهینه‌سازی پرتابگرگازی دومرحله‌ای به روش پاسخ سطح. مهندسی مکانیک مدرس 139-129 :(2)16.
[22] Okati V, Behzadmehr A, Farsad S (2016)  Analysis of a solar desalinator (humidification–dehumidification cycle) including a compound system consisting of a solar humidifier and subsurface condenser using DoE. Desalination 397: 9-21.
[23] مهرور ع، باستی ع، جمالی ع (1396)  بهینه سازی        چند هدفه پارامترهای ماشین‌کاری الکتروشیمیایی با     استفاده از روش سطح پاسخ. مجله مکانیک سازه‌ها و شاره‌ها 60-49 :(4)7.
[24] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه عملکرد جذب انرژی سازه های چند جداره مربعی و دایروی   با استفاده از روش کپراس و بهینه سازی سازه دایروی با استفاده از روش سطح پاسخ. مجله مکانیک سازه‌ها و شاره‌ها 147-133 :(3)7.
[25] Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev 14(9): 3059-3067.
[26] Douvartzides S, Karmalis I (2016) Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant. Iop Conf Ser-Mat Sci 161(1): 012087.
[27] Invernizzi CM, Iora P, Manzolini G, Lasala S (2017) Thermal stability of n-pentane, cyclo-pentane and toluene as working fluids in organic Rankine engines. Appl Therm Eng 121: 172-179.
[28] Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH (2017) Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl Therm Eng 111: 397-406.
[29] Montgomery DC (2017) Design and analysis of experiments. 9th edn. Wiley, New York.