Analysis of fluid-structure interaction in a pipeline with symmetric and asymmetric branching conveying turbulent flow: A case study

Authors

1 Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran

2 Mechanical Engineering Department,, Kermanshah University of Technology, Kermanshah, Iran

Abstract

Fluid-structure intraction analysis of conveying fluid pipe is one of the important issues in the oil and gas industries. In this study, one of the process lines of Biston Petrochemical Company containing Paraffin fluid (about 90%) and Olefin (about 10%) with two different symmetric and asymmetric designs has been investigated. The investigations consist of two parts: expreiments and modeling. In the modeling section, the pipeline is first simulated in Ansys-Fluent software and the finite element results are entered into the software design section as a one-way coupling. The results of exprimental studies and finite element modelig showed that the root of vibration of this line is turbulence and oscillating pressure of the fluid on the wall of the pipe and with a combination of elastic and fixed constraints, the displacements of the pipeline can be controlled. A good agreement between the simulation and the practical results has been seen. The results also showed that the amplitude of vibration after including supports is reduced to 94% in the asymmetric branch pipeline and up to 86% in the symmetric design. Therefore, the support has a significant effect on the results.

Keywords


[1] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[2] Mirramezani M, Mirdamadi HR, Ghayour M (2013) Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure. Comput Mater Sci 77:161-171.‏
[3] Abolpour B, Shamsoddini R (2019) A predictive formula for the Nusselt number of compressible laminar fluid flow passing the thermal developing zone of a hot tube. Heat Transfer Asian Res 48(4): 1529-1543.‏
[4] He Y, Bayly AE, Hassanpour A (2018) Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows. Powder Technol 325: 620-631.‏
[5] Tuković Ž, Karač A, Cardiff P, Jasak H, Ivanković A (2018) OpenFOAM finite volume solver for fluid-solid interaction. Trans FAMENA 42(3): 1-31.‏
[6] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[7] Shankarachar SM, Radhakrishna M, Babu PR (2015) An experimental study of flow induced vibration of elastically restrained pipe conveying fluid. In Proceedings of the 15th International Mechanical Engineering Congress & Exposition IMECE15.‏
[8] Veerapandi R, Karthikeyan G, Jinu DG, Kannaiah R (2014) Experimental study and analysis of flow induced vibration in a pipeline. Int J Eng Res Tech 3(5): 1996-1999.‏
]9[ مشاک م ع، کرامت ع (1399) اندرکنش سیال-سازه ناشی از ضربه قوچ در خط لوله تحت فشار با در نظر گرفتن رفتار غیرخطی هندسی دیواره لوله. نشریه مهندسی عمران امیرکبیر 20-1 :(7)52.
]10[ تشکری بافقی م، الهامی ر، ربیعی ع (1394) تحلیل عددی پدیده تعامل سیال– سازه بر روی پره توربین. دو فصلنامه علمی پژوهشی مکانیک سیالات و آیرودینامیک 11-1 :(2)4.
]11[ کریمیان علی آبادی ح، احمدی ا، کرامت ع (1397) مطالعه جریان گذرا در لوله ویسکوالاستیک با      احتساب اثرات اندرکنشی بر مبنای پاسخ تحلیلی در حوزه فرکانس. نشریه مهندسی مکانیک امیرکبیر     160-151 :(4)52.
[12] Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: Definition, process, and challenges. Inf Visualization 4950:154-175.
[13] An C, Su J (2015) Dynamic behavior of pipes conveying gas–liquid two-phase flow. Nucl Eng Des 292: 204-212.‏
[14] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[15] Rezaee M, Arab Maleki V (2017) Vibration Characteristics of fluid-conveying pipes in presence of a dynamic vibration absorber. Modares Mechanical Engineering 17(7): 31-38.‏ (In Persian)
 [16] De La Torre O, Escaler X, Goggins J (2017) Experimental study of the dynamic response of partially filled pipes focused on natural frequencies and mode shapes. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers Digital Collection.‏
[17] Chao C, Xu X, Kwelle SO, Fan X (2018) Significance of gas-liquid interfaces for two-phase flows in micro-channels. Chem Eng Sci 192: 114-125.‏
[18] Heshmati M, Amini Y, Daneshmand F (2019) Vibration and instability analysis of closed-cell poroelastic pipes conveying fluid. Eur J Mech A Solids 73: 356-365.‏
[19] Keramat A, Tijsseling AS, Hou Q, Ahmadi A (2012) Fluid–structure interaction with pipe-wall viscoelasticity during water hammer. J Fluids Struct 28: 434-455.‏
[20] Ahmadi A, Keramat A (2010) Investigation of fluid–structure interaction with various types of junction coupling. J Fluids Struct 26(7-8): 1123-1141.‏
[21] Keramat A, Ahmadi A (2012) Axial wave propagation in viscoelastic bars using a new finite-element-based method. J Eng Math 77(1): 105-117.‏
[22] Zanganeh R, Ahmadi A, Keramat A (2015) Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline. J Fluids Struct 54: 215-234.‏
[23] V Ranade V (2002) 3 Turbulent flow processes. Proc Sys Eng 5:57-83.
[24] Fluent User Services Center:
www.fluentusers.com