Experimental and numerical analysis of effective geometrical parameters for energy absorbing of the structures with negative Poisson's ratio made from aluminium alloy 1100

Authors

1 Mech. Mech., Hikim Sabzevari Univ.

2 Mech. Eng. Department, Hikim Sabzevari Univ.

Abstract

Through experimental work and finite element simulations this paper investigates the effective geometrical parameters which absorb energy for structures with negative Poisson's ratio (auxetix structures). In the experimental section, the re-entrant auxetic structure is made from aluminum 1100 and subjected to quasi-static loading as well as stress-strain diagram. Then, the energy absorbing and specific energy absorbing values are calculated. Also, the amount of negative Poisson's ratio (NPR) is evaluated for every step of loading, and the results are compared with the finite element method. Good agreements are found between the experimental and FE results. Next, the effective parameters for energy absorbing including horizontal and oblique strut, initial angle, and structural thickness are investigated. The results show with the increase of the structural thickness and decrease of the initial angle, both horizontal and oblique strut length absorbing energy and specific absorbing energy increase. Finally, the results show, comparing to the honeycomb, the auxetic structure has higher ability to absorb energy.

Keywords


[1]  Yang W, et al (2004) Review on auxetic materials. J Mater Sci 9(10): 3269-3279.
[2]  Wan H, et al (2004) A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model. Eur J Mech Solids 23(1): 95-106.
[3]  Mir M, et al (2014) Review of mechanics and applications of auxetic structures. Adv Mater Sci Eng 2014.
[4]  Voigt W (1893) Bestimmung der Elasticitätsconstanten für das chlorsaure Natron. Ann Phys 285(8): 719-723.
[5]  Uzun M (2012) Mechanical properties of auxetic and conventional polypropylene random short fibre reinforced composites. Fibres & Textiles in Eastern Europe.
[6]  Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117: 72-83.
[7]  Meena K, Singamneni S (2019) A new auxetic structure with significantly reduced stress concentration effects. Mater Des 173: 107779.
[8]  Schwerdtfeger J, et al (2010) Auxetic cellular structures through selective electron beam melting. Phys Status Solidi (b) 247(2): 269-272.
[9] Sanami M, et al (2014) Auxetic materials for sports applications. Procedia Engineer 72(Supplement C): 453-458.
[10] Yang S, et al (2013) A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Adv Mech Eng 5: 589216.
[11] Grujicic M, et al (2015) A zeolite absorbent/nano-fluidics protection-based blast-and ballistic-impact-mitigation system. J Mater Sci 50(5): 2019-2037.
[12] غزنوی اسگوئی ا، شرعیات م (2019) تحلیل تنش و جابجایی ورق‌های ساندویچی ضخیم دارای هسته آگزتیک تغییر شکل‌پذیر به کمک تئوری عمومی-محلی مرتبه سه بهبود یافته. مجله مکانیک سازه­ها و شاره­ها 122-109: (2)9.
[13] Rad MS, et al (2019) Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures. Acta Mech 230(6): 2171-2185.
[14] Rad MS, et al (2019) Determination of energy absorption in different cellular auxetic structures. Mech Ind 20(3): 302.
[15] Nasim MS, Etemadi E (2018) Three dimensional modeling of warp and woof periodic auxetic cellular structure. Int J Mech Sci 136: 475-481.
[16] Najafi M, H. Ahmadi, G. Liaghat (2020) Experimental and Numerical Investigation of Energy Absorption in Auxetic Structures under Quasi-static Loading. Modares Mechanical Engineering 20(2).
[17] Ajdari A, et al (2012) Hierarchical honeycombs with tailorable properties. Int J Solids  Struct 49(11-12): 1413-1419.
[18] Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio. Int J Mech Sci 37(1): 51-59.
[19] Zhang Z, Hu H, Xu B (2013) An elastic analysis of a honeycomb structure with negative Poisson’s ratio. Smart materials and structures 22(8): 084006.
[20] Imbalzano G, et al (2018) Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos Struct 183: 242-261.
[21] Safikhani Nasim M, Etemadi E (2017) Analysis of effective parameters of auxetic composite structure made with multilayer orthogonal reinforcement by finite element method. Modares Mechanical Engineering 17(4): 247-254.
[22] Biarjemandi M, Etemadi E, Lezgy-Nazargah M (2020) Evaluation of mechanical properties of fiber reinforced composites filled with hollow spheres: A micromechanics approach. J Compos Mater.
[23] آلبویه ع (2016) تحلیل عددی خواص مکانیکی نانوکامپوزیت های متخلخل مزوپروس سیلیکا و هیدروکسی آپاتیت-پلی پروپیلن. مجله مکانیک سازه‌ها و شاره‌ها 309-299: (3)6.
[24] قاجار ر، شرعیات م، حسینی س ح (2015) تحلیل عددی الاستیسیته غیرخطی ضربه کم‌سرعت خارج از مرکز ورق ساندویچی مستطیلی با رویه‌های کامپوزیتی تحت پیش‌بار دوبعدی. مجله مکانیک سازه‌ها و شاره‌ها 99-87: (1)5.
[25] Toluei A, Etemadi E (2020) Mechanical properties of multifunctional composite structures with z-pin core using numerical simulation of Hopkinson pressure bar test device. Journal of Science and Technology of Composites 7(1): 683-693.
[26] جعفری س، رهنما س (2017) بررسی عددی جذب انرژی در سازه‌های ساندویچی کامپوزیتی تحت ضربه کم سرعت. مجله مکانیک سازه‌ها و شاره‌ها 64-51: (1)7.
[27] عبدالمنافی ع، رحمانی ح (2020) مطالعه تحلیلی و عددی جذب انرژی در ضربه‌گیرهای استوانه‌ای با ضخامت دیواره متغیر. مجله مکانیک سازه‌ها و شاره‌ها 102-91: (3)10.
[28] آشنای قاسمی ف، ملکزاده فرد ک، خلیلی م ع (2015) پاسخ دینامیکی تیر ساندویچی خمیده دارای هسته انعطاف‌پذیر تحت ضربه شعاعی با سرعت پایین. مجله مکانیک سازه‌ها و شاره‌ها 129-13: (1)5.
[29] Bitzer T (1997) Honeycomb technology: materials, design, manufacturing, applications and testing. Springer Science & Business Media.