Computational homogenization to study the effect of microscopic cracks on the macroscopic strength of polycrystalline materials

Author

Mechanical engineering group, College of engineering, Kermanshah branch, Islamic Azad University, Kermanshah, Iran

Abstract

In this paper, the capability of computational homogenization technique in the prediction of the macroscopic yield surface of polycrystalline materials at the presence of microscopic damage is investigated. In order to perform the computational homogenization, the irregular shape representative volume elements (RVE) composed of two dimensional grains is used. The grains are considered as an undamageable linear elastic material while the grain boundaries are modeled by a nonlinear cohesive interface law. To study the effect of initial microscopic damages, three different shapes of fully damaged cracks are inserted at the center of RVEs. The Drichlet’s boundary conditions extracted from a macroscopic strain tensor is imposed on the boundary of RVEs and gradually increased until the full failure of samples. The results show that initial damages can dramatically reduce the material strength and give rise to an asymmetric yield surface whereas they have no effect on the macroscopic modulus of elasticity.

Keywords


[1] مهرداد شکریه م، زین الدینی ا (1394) مدل سازی چقرمگی شکست تورق مود ترکیبی اول و دوم در نمونه یکسر گیردار دو لبه نامتقارن کامپوزیت‌های لایه‌ای. مدل سازی در مهندسی 11-1: 41.
[2] سلیمانی م، طهانی م، زمانی پ (1397) بررسی اثر ناحیه غنی از رزین بر رشد ترک در هسته فومی پره کامپوزیتی توربین بادی به روش المان محدود. مجله مکانیک سازه­ها و شاره­ها 38-27 :(4)8.
[3] رحیم نژاد م، وحیدی ب، ابراهیمی حسین زاده ب، یزدیان ف (1398) شبیه سازی دینامیک مولکولی برهم کنش داروی ضد سرطان پاکلیتاکسل با غشای سلولی: بررسی تغییرات انرژی واندروالسی و فاصله مرکز جرم. مدل سازی در مهندسی 25-15 :57.
[4] یاسینی س، شریعتی م (1396) مدل سازی و شبیه سازی رفتار کمانشی نانو سیم‌های سیلیسیم {111} و {100} با استفاده از روش مکانیک ساختاری. مدل سازی در مهندسی 93-85 :50.
[5] آلبویه علیرضا (1395) تحلیل عددی خواص مکانیکی نانوکامپوزیت های متخلخل مزوپروس سیلیکا و هیدروکسی آپاتیت-پلی پروپیلن. مجله مکانیک سازه­ها و شاره­ها 309-299 :(3)6.
[6] Oskay C (2015) Multiscale modeling of the response and life prediction of composite materials. In Camanho PP, Hallett SR (eds.), Numerical Modelling of Failure in Advanced Composite Materials pp 351-375. Woodhead Publishing.
[7] مهدوی م، بنی اسدی م، باغانی م (1395) بازسازی     سه بعدی کامپوزیت نانولوله کربنی با استفاده از       توابع آماری همبستگی. مجله مکانیک سازه­ها و شاره­ها 42-33 :(3)6.
[8] Feyel F, Chaboche J (2000) FE^2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC / Ti composite materials. Comput Methods Appl Mech Eng 183: 309-330.
[9] Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc London A Math Phys Sci 326: 131-147.
[10] Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38: 2335-2385.
[11] Miehe C, Becker M, Schruder J (2002) Computational homogenization analysis in finite elasticity : material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191: 4971-5005.
[12] Pivovarov D, Oberleiter T, Willner K,     Steinmann P (2018) Fuzzy-stochastic FEM–based homogenization framework for materials with polymorphic uncertainties in the microstructure. Int J Numer Methods Eng 116: 633-660.
[13] Vila-Ortega J, Ridruejo A, Martínez-Hergueta F (2020) Multiscale numerical optimisation of hybrid metal/nonwoven shields for ballistic protection. Int J Impact Eng 138: 103478.
[14] Sukumar N, Srolovitz DJ, Baker TJ, Prã J (2003) Brittle fracture in polycrystalline microstructures with the extended ÿnite element method. Int J Numer Methods Eng 2037: 2015–2037.
[15] Wei Y, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52: 2587-2616.
[16] Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mech Mater 39: 241-266.
[17] Kerfriden P, Allix O, P. Gosselet (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminates. Comput Mech 44: 343-362.
[18] Verhoosel CV, Gutiérrez M a. (2009) Modelling inter- and transgranular fracture in piezoelectric polycrystals. Eng Fract Mech 76: 742-760.
[19] Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42: 1397-1434.
[20] Menk A, Bordas SP a. (2011) Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Comput Mater Sci 50: 1145-1156.
[21] Shabir Z, Giessen E Van Der, Duarte C a, Simone A, Van der Giessen E (2011) The role of cohesive properties on intergranular crack propagation in brittle polycrystals. Model Simul Mater Sci Eng 19: 035006.
[22] Nguyen VP, Lloberas-valls O, Stroeven M, Sluys LJ (2012) Computational homogenization for multiscale crack modeling . Implementational and computational aspects. Int J Numer Methods Eng 89: 192-226.
[23] Abbès F, Abbès B, Benkabou R, Asroun A (2020) A FEM multiscale homogenization procedure using nanoindentation for high performance concrete. J Appl Comput Mech 6: 493-504.
[24] یوسفی ا، بنی اسدی م، مهدوی م، باغانی م، فرجی ق (1397) شبیه‌سازی و بررسی نانو کامپوزیت پلیمری تقویت‌شده با نانولوله‌های کربنی و نانو هلیکال‌های کربنی. مهندسی عمران 102-95 :34.
[25] Hajikazemi M, Sadr MH (2014) Stiffness reduction of cracked general symmetric laminates using a variational approach. Int J Solids Struct 51: 1483-1493.
[26] Hun D, Guilleminot J, Yvonnet J, Bornert M (2019) Stochastic multi-scale modeling of crack propagation in random heterogeneous media. Int J Numer Methods Eng 119(13): 1-22.
[27] Akbari A, Kerfriden P, Bordas S (2018) On the effect of grains interface parameters on the macroscopic properties of polycrystalline materials. Comput Struct 196: 355-368.
[28] Akbari A (2014) Error controlled adaptive multiscale method for fracture in polycrystalline materials.
[29] Allix O, Kerfriden P, Gosselet P (2010) On the control of the load increments for a proper description of multiple delamination in a domain decomposition framework . Int J Numer Methods Eng 11: 1518-1540.
[30] Bak BL V, Lindgaard E, Lund E (2014) Analysis of the integration of cohesive elements in regard to utilization of coarse mesh in laminated composite materials. Int J Numer Methods Eng 99: 566-586.
[31] Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer.
[32] Kouznetsova VG, Geers MGD, Brekelmans W a. M (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54: 1235-1260.
[33] کلهر م، گنجیانی م، اعظمی ا (1397) بررسی     تجربی رشد آسیب خستگی با استفاده از روش های سنجش تغییرات مدول وتری و میکروسختی در فولاد ضد زنگ 316 کم کربن. مهندسی مکانیک امیرکبیر 532-525 :50.
[34] Vijay A, Sadeghi F (2019) An anisotropic damage model for tensile fatigue. Fatigue Fract Eng Mater Struct 42: 129-142.
[35] Balachandramurthi AR, Moverare J, Hansson T, Pederson R (2020) Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion. Int J Fatigue 141: 105898.
[36] Dascalu C, Bilbie G, Agiasofitou E (2008) Damage and size effects in elastic solids: A homogenization approach. Int J Solids Struct 45: 409-430.