Investigating the influencing parameters on blood flow of grafted vessel in coronary artery bypass surgery

Authors

1 School of mechanical engineering, Shiraz University

2 School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Abstract

The most common heart disease is coronary arteries stenosis. Generally, there are three approaches for treatment of coronary artery stenosis that includes coronary artery bypass surgery, Angioplasty and drug therapy. Coronary artery bypass surgery includes surgical procedure that blood flow path is diverted in the part that stenosis was occurred and then is guided to the another direction. For this purpose, Cardiac surgeon removes the vessel from the another part of the body and grafts it into the desired location and thus blood flow in that part is restored again. In this study the attempts were made to study the bypass flow rate that is required for grafted vessel for different degrees of stenosis in the coronary artery by using various simple one-dimensional equations. So that we can find the values of bypass flow, especially in the higher percentage of stenosis, with a fairly appropriate approximation. This model could be a guidance for surgeon to choose an appropriate bypass for a patient.

Keywords


[1]  Waite  L, Fine JM (2007) Applied biofluid mechanics. McGraw-Hill, New York.
[2] تقی زاده ی، وحیدی ب، اکبری ب، جلالیان صداقتی ش، (1399) تحلیل عددی شریان کرونری استنت گذاری شده: بررسی عملکرد دو استنت با جنس‌های منیزیمی و فولادی. نشریه مهندسی مکانیک امیرکبیر 532-525 :(4)52.
[3] کاظمیان م، افراسیاب ح، پاشایی م (1395) مقایسه خطر پارگی پلاک در آرایش های مختلف گرفتگی دوگانه عروق کرونری با کمک شبیه سازی برهمکنش سیال- جامد. مهندسی مکانیک مدرس 18-10 :(2)16.
[4] Ohtani N, Kiyokawa K, Asada H, Kawakami T, Haga M, Akasaka N (2001) Evaluation of an internal thoracic artery as a coronary artery bypass graft by intercostal duplex scanning ultrasonography. Jap J Thorac Cardiovasc Sur 49(6): 343-346.  
[5]  Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses—I. Steady flow. J Biomech 6(4): 395IN3403-402410.
[6]  Seeley BD, Young DF (1976) Effect of geometry on pressure losses across models of arterial stenoses. J Biomech 9(7): 439-448.
[7]  Young DF, Cholvin NR, Roth AC (1975) Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 36(6): 735-743.
[8] Huo Y, Svendsen M, Choy JS, Zhang ZD, Kassab GS (2011) A validated predictive model of coronary fractional flow reserve. J R Soc Interface rsif20110605.
[9] Pijls NH, Van Gelder B, Van der Voort P, Peels K,   Bracke FA, Bonnier HJ, El Gamal MI (1995) Fractional flow reserve. Circulation 92(11): 3183-3193.
[10] Abe M, Tomiyama H, Yoshida H, Doba N (2000) Diastolic fractional flow reserve to assess the functional severity of moderate coronary artery stenoses. Circulation 102(19): 2365-2370.
[11] Belkin M, Mackey WC, McLaughlin R, Umphrey SE, O'Donnell TF (1992) The variation in vein graft flow velocity with luminal diameter and outflow level. J Vasc Surg 15(6): 991-999.
[12] O’Connor NJ, Morton JR, Birkmeyer JD, Olmstead EM, O’Connor GT (1996) Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Circulation 93(4): 652-655.
[13] Ibanez B, Navarro F, Cordoba MPMA, M-alberca P, Farre J (2005) Tako-tsubo transient left ventricular apical ballooning: is intravascular ultrasound the key to resolve the enigma?. Heart 91(1): 102-104.
[14] Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Chandran K.B (2004) Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion Ann  Biomed Eng 32(12): 1628-1641.
[15]  Nasu M, Akasaka T, Okazaki T, Shinkai M, Fujiwara H, Sono J, Shomura T (1995) Postoperative flow characteristics of left internal thoracic artery grafts. Ann Thorac Surg 59(1): 154-162.
[16] He GW (2006) Arterial Grafting for Coronary Artery Bypass Surgery. Springer, Berlin.
[17] Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Mayet J (2006) Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113(14): 1768-1778.
[18] Gould KL, Lipscomb K, Hamilton GW (1974)  Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1): 87-94.
[19] Algranati D, Kassab GS, Lanir Y (2013) Flow restoration post revascularization predicted by stenosis indexes: sensitivity to hemodynamic variability. Am J Physiol-Heart C 305(2): H145-H154.
[20] Smits PC, Abdel-Wahab M, Neumann FJ, Boxma-de Klerk BM, Lunde K, Schotborgh CE, Piroth Z, Horak D, Wlodarczak A, Ong PJ, Hambrecht R (2017) Fractional flow reserve-guided multivessel angioplasty in myocardial infraction. New Engl J Med 367(13): 991-1001.
[21] Elert G (1998) The physics hypertextbook. Brooklyn, New York.