Investigation of the nonlinear vibration and linearization error in resonant pressure micro sensors

Author

Department of Mechanical Engineering, Faculty of Engineering, Ardakan University.

Abstract

In the present paper, a dynamic model is presented to investigate the nonlinear vibration of resonant pressure micro sensors. The device is considered as a circular micro plate under electrostatic actuation. Due to external pressure, the micro plate deflects and moves in the electric field. This motion changes the natural frequency of the micro plate and this frequency change is used to estimate the external pressure. To model the micro sensor, the equation governing the axisymmetric deflection of the micro plate is derived in polar coordinate system. This equation is reduced to a nonlinear ODE and solved utilizing Lindstedt-Poincaré method. The nonlinear natural frequency of the micro sensor is calculated and effects of applied voltage and pressure on this frequency are studied. Findings of this work reveal that estimating the external pressure based on the linear natural frequency may results in a considerable measurement error which increases as the amplitude of plate vibration increases.

Keywords


[1] Kose, T, Azgin, K, Akin, T (2016) Design and fabrication of a high performance resonant MEMS temperature sensor. J Micromech Microeng 26(4): 045012.
[2] سید کاظم ویلیانی ن، هاشمی م، وادی زاده هـ، پوررستمی ح، مصطفوی س م، هاشمی زاده ف    (1393) مدل‌سازی و بررسی تجربی فشارسنج       میکرو الکترومکانیکی پیزومقاومتی بر اساس الزامات عملکرد صنعت پتروشیمی. مهندسی مکانیک مدرس 357-349 :(16)14.
[3] Chen F, Zhao Y, Wang J, Zou H, Kraft M, Li X (2017) A single-side fabricated triaxis (111)-silicon microaccelerometer with electromechanical sigma–delta modulation. IEEE Sen J 18(5): 1859-1869.
[4] عبداللهی ح، سمائی فر ف،  حق نگهدار ا (1394) بررسی اثر به‌کارگیری SiO2/Al در بالا بردن حساسیت آشکارسازهای مادون‌قرمز بر پایه میکروکانتیلیور و مقایسه آن با Si3N4/Au. مجله مکانیک سازه­ها و شاره­ها  1637-151 :(3)5.
[5] مجاهدی م، بینا ر (1397) بررسی ناپایداری و رفتار ارتعاشی میکروتیرژیروسکوپی با در نظر گرفتن گستردگی جرم گواه. مجله مکانیک سازه­ها و شاره­ها  106-93 :(2)8.
[6] اکرمی نیا ا، اختراعی طوسی ح (1399) تاثیر انحنای میکروتیر و الکترود بر ناپایداری‌های جذب و اسنپ-ترو. مهندسی مکانیک امیرکبیر 150-141 :(8)22.
[7] Gomez M, Moulton DE, Vella D (2017) Delayed pull-in transitions in overdamped MEMS devices. J Micromech and Microeng 28(1): 015006.
[8] Sun Y, Nelson BJ (2007) MEMS capacitive force sensors for cellular and flight biomechanics. Biomed Mater 2(1): S16.
[9] Bouchaala A, Nayfeh AH, Younis MI (2017) Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass. Meccanica 52(1-2): 333-348.
[10] Park SW, Das PS, Chhetry A, Park JY (2017) A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens J 17(20): 6558-6564.
[11] Karumuthil SC, Singh K, Valiyaneerilakkal U, Akhtar J, Varghese S (2020) Fabrication of poly (vinylidene fluoride-trifluoroethylene)–Zinc oxide based piezoelectric pressure sensor. Sens  Actuators A 303: 111677.
[12] Fu X, Xu L (2019) Multi-field coupled chaotic vibration for a micro resonant pressure sensor. Appl Math Modell 72: 470-485.
[13] Sujan Y, Uma G, Umapathy M (2016) Design and testing of piezoelectric resonant pressure sensor. Sens Actuators A 250: 177-186.
[14] Yenuganti S, Gandhi U, Umapathy M (2017) Piezoelectric microresonant pressure sensor using aluminum nitride. J Micro/Nanolithogr, MEMS MOEMS 16(2): 025001.
[15] Arefin MS, Redouté JM, Yuce MR (2016) A low-power and wide-range MEMS capacitive sensors interface IC using pulse-width modulation for biomedical applications. IEEE Sens J 16(17): 6745-6754.
[16] Balavalad KB, Sheeparamatti B, Math VB (2017) Design and simulation of MEMS capacitive pressure sensor array for wide range pressure measurement. Int J Comput Appl 163(6): 39-46.
[17] Parthasarathy E, Malarvizhi S (2018) Modeling analysis and fabrication of MEMS capacitive differential pressure sensor for altimeter application. J Chin Inst Eng 41(3): 206-215.
[18] Mishra RB, Kumar SS, Mukhiya R (2019) Design and simulation of capacitive pressure sensor for blood pressure sensing application. Recent Trends in Communication, Computing, and Electronics. Springer, Singapore.
[19] Panwar LS, Kala S, Panwar V, Panwar SS, Sharma S (2017) Design of MEMS piezoelectric blood pressure sensor. Proc IEEE 3rd Int Conf Adv Comp Commun Autom (ICACCA).
[20] Seo Y, Kim D, Hall NA (2019) Piezoelectric pressure sensors for hypersonic flow measurements at high-temperatures. J Acoust Soc Am 146(4): 2997-2997.
[21] Seo Y, Kim D, Hall NA (2019) Piezoelectric pressure sensors for hypersonic flow measurements. J Microelectromech Sys 28(2): 271-278.
[22] Zhu L, Xing Y, Xie B, Xiang C, Lu Y, Chen D, Wang J, Chen J (2017) A high-quality resonant pressure micro sensor with through-silicon-via electrical interconnections. Proc. IEEE 19th Int. Conf. Solid-State. Sens. Actuators. Microsys (TRANSDUCERS). 82-85.
[23] Yan P, Lu Y, Xiang C, Wang J, Chen D, Chen J (2019) A temperature-insensitive resonant pressure micro sensor based on silicon-on-glass vacuum packaging. Sensors 19(18): 3866.
[24] Banerji S, Michalik P, Fernández D, Madrenas J, Mola A, Montanyà J (2017) CMOS-MEMS resonant pressure sensors: optimization and validation through comparative analysis. Micros Technol 23(9): 3909-3925.
[25] Rao SS (2007) Vibration of continuous systems.  John Wiley & Sons, New Jersey.
[26] Reddy JN (2006) Theory and analysis of elastic plates and shells. 2nd edn.  CRC press, New York.
[27] Lai WM, Rubin DH, Krempl E, Rubin D (2009) Introduction to continuum mechanics. 4th edn.  Butterworth-Heinemann, London.
[28] Reddy JN (2007) An introduction to continuum mechanics. Cambridge university press, New York.
[29] Chao PC, Chiu C, Tsai C (2006) A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force. J Micromech Microeng 16(5): 986.
[30] Nayfeh AH, Mook DT (1979) Nonlinear oscillations. John Wiley & Sons, USA.
[31] Nayfeh AH (1993) Introduction to perturbation techniques.  John Wiley & Sons, USA.
[32] Nayfeh AH (1973) Perturbation methods. John Wiley & Sons, USA.
[33] Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. 2nd edn.  McGraw-hill, USA.
[34] Ke LL, Wang YSYang J, Kitipornchai S (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331(1): 94-106.
[35] Thai CH, Ferreira AJM, Phung-Van P (2020) Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Eng Anal Bound Elem 117: 284-298.
[36] Ahmad B, Pratap R (2010) Elasto-electrostatic analysis of circular microplates used in capacitive micromachined ultrasonic transducers. IEEE Sens J 10(11): 1767-1773.
[37] Li Z, Zhao L, Jiang Z, Ye Z , Zhao Y (2014) An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure. J Microelectromech Syst 24(2): 474-485.