Modeling and evaluation of the flow regime effects on fluid movement into three-dimensional channel with porous wall

Authors

1 Department of Mechanical Engineering, Facualty of Engineering, University of Birjand, Birjand, Iran

2 Mech. Eng., Birjand Univ., Birjand, Iran

Abstract

In the present work a three-dimensional simulation of the slip flow regime for a small-sized channel of a fuel cell with lower porous wall. This study is used to determine the variations of average velocity, pressure difference, and friction coefficient considering the penetrated mass from porous wall, the wall and channel cross-sectional area, and aspect ratio of channel. Furtermore, the results are comprised with Continuous flow regime. In this solution, the equations of mass and momentum for continuous and slip regimes evaluated with developed Fortran code, and Validated with papers.The results with different channel area for two fluid regimes are obtained. Considering the aspect ratio equal to one, the friction coefficient average velocity, and the pressure difference are increased with decreasing at Knudsen number. Considering the slip regime into the channel, the friction coefficient, pressure difference and average velocity values are calculated more accurate (at best 5%), than non-slip regimes. Furthermore, when Knudsen number and aspect ratio are respectively equal to 0.001 and 5, changing the flow assumption from non-slip regime to slip one is occurred to increasing the expected pressure difference and average velocity.

Keywords


[1] Hassanzadeh H, Mansouri SH (2005) Efficiency of ideal fuel cell and carnot cycle from a fundamental perspective. J Energ Power Eng 219: 245-254.
[2] Hsieh S, Huang Y (2008) Measurements of current and water distribution for a micro-PEM fuel cell with different flow fields. J Power Sourc 183:193-204.
]۳[ شریعتی ز، افشاری ا (1393) بررسی عملکرد میدان‌های مختلف جریان خنک‌کاری با کانال‌های موازی در پیل سوختی غشا پلیمری. مجله مکانیک سازه‌ها و شاره‌ها 121-109 :(3)4.      
[4] Kundu A, Jang J, Gil J, Jung C, Lee H, Kim S, Ku B, Oh Y (2007) Micro-fuel cells-Current development and applications. J Power Sourc 170: 67-78.
]5[ شاهی ع، حاجیلری ن، کاظمی م (1398) شبیه‌سازی CFD پیل سوختی اکسید جامد پایه آندی. مجله مکانیک سازه‌ها و شاره‌ها 235-217 :(1)9.
]6[ فرزاد م، حسن‌زاده ح، صفوی نژاد ع، ابراهیمی م (1394) تحلیل انرژی، اگزرژی و بهینه‌سازی یک سیستم تولید همزمان بر پایه پیل سوختی اکسید جامد صفحه‌ای جهت کاربرد مسکونی. مجله مکانیک سازه‌ها و شاره‌ها 228-213 :(4)5.  
]7[ پیرکندی ج، منفرد ر (1397) شبیه سازی ترمودینامیکی یک سیستم هیبریدی توربین باد و پیل سوختی با کاربرد در یک سیستم مستقل از شبکه. مدل‌سازی در مهندسی 3 :(53)16.
[8] Scotti G, Kanninen P, Kalli T, Franssila S (2014) Simple Stacking Methods for Silicon Micro Fuel Cells. Micromachines 5:558-569.
[9] Kandlikar G, Garimella S, Li D, Colin S, King        R (2006) Heat transfer and fluid flow in minichannels and microcannels. 2nd edn. Elsevier, Netherlands.
[10] Hassanzadeh H, Mansouri SH, Mehr-Abian M (2008) A two dimensional simulation of developing laminar heat and mass transfer in fuel cell channels with uniform suction of O2 and H2. J Energ Power Eng 222: 47-59.
]11[ کاوه ر، سفید م، شمسی م (1398) بررسی عددی اختلاط دو سیال با لزجت متفاوت در یک میکروکانال در نسبت‌های منظری مختلف پره به روش شبکه بولتزمن. مجله مکانیک سازه‌ها و شاره‌ها 202-187 :(1)9.
[12] Bernardi DM, Verbrugge MW (2007) A mathematical model of a solid polymer electroiyte fuel cell. J Electrochem Soc 139: 2477-2491.
[13] Hum B, Li X (2004) Two dimensional analysis    of PEM fuel cells. J Appl Electrochem 34: 205-215.
[14] Hassanzadeh H, Li X, Baschuk JJ (2011) Numerical simulation of laminar flow development with heat and mass transfer in PEM fuel cell      flow channels having oxygen and hydrogen   suction at one channel wall. Int J Energ Res 35: 670-689.
]15[ احمدی ن، دادوند ع، میرزایی ا، رضازاده س (1397) بررسی عددی عملکرد پیل سوختی پلیمری دو محفظه با جریان گاز ناهمسو. مدل‌سازی در مهندسی 4 :(53)16.
[16] Kinney RB (1968) Fully developed frictional and heat transfer characteristics of laminar flow in porous. Int J Heat Mass Tran 11: 1393-1401.
[17] Hwang G, Cheng Y, Ng M (1993) Developing laminar flow and heat transfer in square duct with one walled injection and suction. Int J Heat Mass Tran 36: 2429-2440.
[18] Yuan J, Rokni M, Sunden B (2001) Simulation of fully developed laminar heat and mass transfer in fuel cell ducts with different cross section. Int J Heat Mass Tran 44: 4047-4058.
[19] Cheng Y, Hwang G (1995) Experimental studies of laminar flow and heat transfer in a one porous wall square duct with wall injection. Int J Heat Mass Tran 38: 3475-3484.
[20] Kalteh M, Abbassi A, Bahrami, M (2012)           An approximate model for slug flow heat transfer in channels of arbitrary cross section. JSFM 2(3): 1-7.
[21] Larminie J, Dicks A (2003) Fuel cell system explained. 2nd edn. John Wiley & sons, USA.
]22[ امینی ر، مقصودی ر، باصفت ن، توکلی م (1394) مدل‌سازی جریان در کانال با استفاده از تحلیل ایزوژئومتریک. مجله مکانیک سازه‌ها و شاره‌ها 26-15 :(5)4.
[23] Gordon H, III D (2003) Investigation of a combined heat and power fuel cell system for small scale residential applications. mechanical engineering, North Carolina State University.
[24] With F (2010) Fluid mechanics.7th edn. McGraw-Hill Higher Education, USA.
[25] Zafariyan S, Fanaee S (2013) MHD mixed convective flow past a vertical plate embedded in a porous medium with radiation effects and convective boundary condition considering chemical reaction. CUJSE 1: 123-136.
[26] DoostiAbukheyli A, Hassanzadeh H, Mirbozorgi S (2017) Pseudo 3D modeling of suction and injection effects on fully developed laminar flow and heat transfer in rectangular fuel cell channels. J Power Energ Eng 0: 1-16.
[27] Jennings G (1988) The mean free path in air. J Aerosol Sc 2: 159-166.
]28[ اسفه م، سعدالدین س، کاظمی ش، علیرضایی ع (1396) مطالعه آزمایشگاهی و ارائه مدلی جدید به منظور پیش‌بینی ویسکوزیته دینامیکی نانوسیال آب- اکسید آلومینیوم. مدل‌سازی در مهندسی 90-82 :(48)15.
[29] Colin S, Lalone P, Caen R (2004) Validation of a Second-Order Slip Flow Model in Rectangular Microchannels. Heat Tran Eng 25:25-30.
[30] Hoffmann A, Chiang T (Azimian A) (2000) Computational fluid dynamics for engineers. 2th edn. EESBook, USA.
[31] Fanaee S, Rezapour M (2019) Analysis of the fluid-thermal regime with the developed brinkman model in a porous coil for solar energy. MME 19(4): 855-863.
[32] Fanaee S, Rezapour M (2020) The modeling of constant/ variable solar heat flux into a porous coil with concentrator. J Sol Energy Eng 142: 1-9.
[33] https://www.fortran.com/products-page/ compilers  /fortrantools-for-windows/