Investigation of Transient Heat Transfer inside Walls of Convergent-Divergent Nozzle

Authors

1 Faculty of Aerospace Engineering, Semnan university

2 Faculty of Mechanical Engineering, Semnan University

Abstract

This paper focused on the transient heat transfer inside a convergent-divergent nozzle which has applications in propulsion systems. Time-averaged Navier Stokes equations in the compressible form were solved using the finite volume method. The flow was assumed to be axisymmetric and the results of simulations were compared with available experimental data. The flow and heat transfer parameters were investigated in different nozzle geometries. The results revealed that the SST k-ω turbulence model gives better predictions compared to other applied turbulence models. Also, for a constant length of the nozzle, increasing the divergence angle caused higher exit Mach numbers and lower exit pressure and temperature. Bell nozzles had more exit Mach number, and less exit temperature and pressures compared to the conical nozzles. Decreasing in the exit angle of the bell nozzle led to an increase in the Mach number and thrust and causes lower exit temperature and pressure. For various nozzle shapes, the values of the heat flux and temperatures were nearly constant at the sections which have the same area ratios. The solid surface temperature at the outlet was greater for the bell shape than that for conical shape. The maximum value of the convection heat transfer coefficient occurred at the nozzle throat. The maximum thrust was obtained by bell shape nozzle. Higher outlet angles gave lower thrusts.

Keywords


[1] Smith DM (1970) A Comparison of experimental heat transfer coefficients in nozzle with analytical predictions from bartz`s method for various combustion chamber pressures in a solid propellant rocket motor. ntrs.nasa.gov, M.Sc. Thesis, Faculty of North Carolina State University at Raleigh. 
[2] Bianchi D, Turchi A, Nasuti F, Onofri M (2012) Coupled CFD analysis of thermochemical erosion and unsteady heat conduction in solid rocket nozzles. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. , 30 July - 01 August 2012, Atlanta, Georgia (AIAA 2012-4318).
[3] Hamedi Estakhrsar MH, Jahromi M (2014) Numerical simulation of turbulent compressible flows in a C-D nozzle with different divergence angles. J Heat Mass Transf Res 1: 93-100.
[4] Kostić OP, Stefanović ZA, Kostić IA (2015) CFD modeling of supersonic airflow generated by 2D nozzle with and without an obstacle at the exit section. FME Transactions 43(2): 107-113.
[5] گلرنگ س، رفعی ر (1393) بررسی اثر تغییر زاویه واگرایی یک شیپوره متحرک بر عملکرد آن در سیستم کنترل بردار نیروی پیشران. نشریه علوم کاربردی و محاسباتی در مکانیک 15-1 :(1)26.
[6] Ronald E Lee (1965) Measurements and correlation of transfer in a solid propellant rocket nozzle. U. S. Naval ordnance laboratory white OAK , Maryland.
[7] Ansys Fluent Users Guide (2013) Release 15,  Ansys Inc.
[8] Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. Tech Rep AIAA-92-0439, Am .Inst Aeronaut Astronaut.
[9] Orszag SA, Yakhot V, Flannery WS, Boysan F, Choudhury D, Maruzewski J, Patel B (1993) Renormalization group modeling and turbulence simulations. Int Conf Near-Wall Turbulent Flows, Tempe, Arizona.
[10] Shin TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k-ɛ eddy-viscosity model for high reynolds number turbulent flows – model development and validation. Comput Fluids 24(3): 227-238.
[11] Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics; the finite volume method. 2nd edn. Pearson/Prentice Hall, Harlow.
[12] Menter FR (1994) Two-equation eddy-viscosity turbulence, models for engineering applications. AIAA J 32(8):1598-1605.
[13] رهایی ن (1398) شبیه سازی عددی جریان و انتقال حرارت گذرا در دیواره های نازل همگرا و واگرا. پایان نامه کارشناسی ارشد، دانشکده هوافضا، پردیس علوم و فناوری­های نوین دانشگاه سمنان.
[14] Sutton O Biblarz (2001) Rocket propulsion elements. 7th  edn. John Wiley Sons, New York.
[15] Wong EY (1968) Solid rocket nozzle design summary. AIAA 4th Propuls Joint Specialist Conf, Ohio, 1-15.
[16] ئی ج، جان ا (1392) دینامیک گازها. ترجمه علی اکبر عالم رجبی، انتشارات دانشگاه صنعتی اصفهان.
[17] صنیعی نژاد م (1394) مبانی جریان­های آشفته و مدل­سازی آن­ها، چاپ دوم، انتشارات دانش نگار.
[18] حسین پور نیکنام ح، منتظری هدش ع (1392) تحلیل تعادل شیمیایی به کمک نرم افزار CEA. ویرایش دوم، انتشارات سرو نگار.
[19] Bartz DR (1965 ) Turbulent boundary-layer heat transfer from rapidly accelerating flow of rocket combustion gases and of heated air. Adv Heat Transf 2: 1-104.
[20] RJB Cumberland , WR Lowstuter (1970) Rocket propellant. United States Patent No 3529551.
[21] Sarkar S, Balakrishnan L (1990) Application of a reynolds-stress turbulence model to the compressible shear layer. ICASE Report 90-18, NASA Contract Rep 182002.