Dimensional characteristic of glass/epoxy composite plate with edge notch under wet freeze-thaw cycles

Authors

1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran

2 faculty of mechanical and energy engineering, shahid beheshti university, tehran, iran

Abstract

Freezing water in the surface cracks of wind turbine blades can remarkably deteriorate its mechanical properties. In order to investigate this phenomena, a finite element model is developed to simulate the icing process in a small scale fiber reinforced composite beam with a sharp notch. The load exerted from the ice onto the beam is calculated by using the model taking into account the expansion of water at freezing temperature. Based on this technique, a new parameter, called the ice expansion effect, is introduced and employed to study the influence of notch opening angle and the beam thickness on the distribution of stress and strain along the notch faces. Compromising between the actual problem, in-service damaged blades, and the existing standard which is commonly applied for characterization of fracture behavior of composite materials, an optimum geometry is designed for experimental investigations. The experimental results acquired from small scale composite beams based on the designed geometry and simultaneously imposed to humidity and freezing temperature demonstrate the significance of ice expansion factor on the monotonic response of the materials and structures conditioned at different number of freeze-thaw cycles.

Keywords


[1] صبا نیرو (1387) بررسی علل ترک‌خوردگی پره توربین بادی 660 کیلوواتی نیروگاه هرزویل، گزارش درون‌سازمانی.
[2] ترابی‌زاده م ا (1390) تحلیل رفتار مکانیکی صفحات کامپوزیتی با استفاده از روش تخریب پیش‌رونده در دماهای پایین. پایان‌نامه دکتری، دانشگاه علم و صنعت.
[3] Alkhader M, Zhai X, Chiang FP (2017) Experimental investigation of the synergistic effects of moisture and freeze-thaw cycles on carbon fiber vinyl-ester composites. J Compos Mater  52(7): 919-930.
[4] Hancox NL  (1998) Thermal effects on polymer matrix composites: Part 1. Thermal cycling. Mater Design 19(3): 85-91.
[5] Rinaldi G, Maura G (1993) Durable glass–epoxy composites cured at low temperatures—Effects of thermal cycling, UV irradiation and wet environment. Polym Int 31(4): 339-345.
[6] Sousa JM, Correia JR, Cabral-Fonseca S, Diogo AC (2014) Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Compos Struct 116(1): 720-731.
[7] Marín L, Gonz_alez EV, Maimí P, Trias D, Camanho PP (2016) Hygrothermal effects on the translaminar fracture toughness of crossply carbon/epoxy laminates: Failure mechanisms. Compos Sci Technol 122(3): 130-139.
[8] Sugiman S, Gozali M, Setyawan PD (2017) Hygrothermal effects of glass fiber reinforced unsaturated polyester resin composites aged in steady and fluctuating consitions. Adv Compos Mater 28(1): 87-102.
[9] Hodzic A, Kim JK, Lowe AE (2004) The effects of water aging on the interphase region and interlaminar fracture toughness in polymer-glass composites. Compos Sci Technol 64(13): 2185-2195.
[10] Ghasemi AR, Moradi M (2016) Low thermal cycling effects on mechanical properties of laminated composite materials. Mech Mater 96(3): 126-137.
[11] Cormier L, Joncas S (2010) Effects of cold temperature, moisture and freeze-thaw cycles on the mechanical properties of unidirectional glass fiber-epoxy composites. 51st AIAA SDM Student Symposium, Orlando, Florida.
[12] Cormier L, Joncas S, Nijssen RPL (2016) Effects of low temoerature on the mechanical properties of glass fiber-epoxy composites: static tension, compression, R=0.1 and R=-1 fatigue of ±45˚ laminates. Wind Energy 19(6): 1023-1041.
[13] Kim MG, Kang SG, Kim CG, Kong CW (2007) Tensile response of graphite/epoxy composites at low temperatures. Compos Struct 79(1): 84-89.
[14] Sanchez-Saez TGRS, Barbero E, Zaera R, Navarro C (2002) Static behavior of GFRPs at low temperatures. Compos Struct 33(5): 383-390.
[15] Kumagai S, Shindo Y, Inamoto A (2005) Tension–tension fatigue behavior of GFRP woven laminates at low temperatures. Cryogenics 45(2): 123-128.
[16] Abdollahi Azghan M, Asghari Arpatappeh F, Eslami-Farsani R (2017) Experimental study of the effect of cryogenic cycling and metal surface treatment on flexural propertiesof aluminum- epoxy/basalt fibers laminate composite. Iranian J Manufact Eng 4(1): 15-24. (in Persian)
[17] Asghari Arpatappeh F, Abdollahi Azghn M, Eslami Farsani R (2020) Effect of cryogenic environmental condition upon flexural properties of aluminum- epoxy/ basalt fibers- glass fibers laminates. J Sci Technol In press. (in Persian)
[18] عابدی م، موسوی ترشیزی س ا، سرفراز ر (2019) بررسی میکروساختاری آسیب ناشی از یخ‌زدگی و سیکل‌های سرمایش/گرمایش بر کامپوزیت شیشه/اپوکسی با شیار لبه‌ای. 27امین کنفرانس مهندسی مکانیک، 10 تا 12 اردیبهشت، تهران، ایران.
[19] Franco LAL, Grac MLA, Silva FS (2008) Fractography analysis and fatigue of thermoplastic composite laminates at different environmental conditions. Mater Sci Eng A 488(1): 505–513.
[20] Asp LE (1998) The effects of moister and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58(6): 967-977.
[21] Todo M, Nakamura T, Takahashi K (2000) Effects of moister absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites. J Compos Mater 34(8): 630-648.
[22] Russell SG (2016) A residual strength prediction methodology for composite laminates with surface damage under tensile loading. in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-8 January, San Diego, USA.
[23] Caous D, Bois C, Wahl JC, Palin-Luc T, Valette J (2017) A method to determine composite material residual tensile strength in the fiber direction as a function of the matrix damage state after fatigue loading. Compos B Eng 127(32): 15-25.
[24] Abedi M, Moussavi Torshizi SE, Sarfarz R (2020) Damage mechanisms in glass/epoxy composites subjected to simultaneous humidity and freeze-thaw cycles. J Eng Fail Anal (In Press) https://doi.org/10.1016/j.engfailanal.2020.105041.
[25] Voitkovskii KF (1960) The mechanical properties of Ice. Translated by the American Meteorological Society.
[26] عابدی م، موسوی ترشیزی س ا، علی‌آبادی آ، سرفراز ر (2019) مشخصه‌سازی اجزاء محدود توسعه یافته اثر انبساط یخ در ورق کامپوزیتی با شیار لبه‌ای. 27امین کنفرانس مهندسی مکانیک، 10 تا 12 اردیبهشت، تهران، ایران.
[27] Pimenta S, Pinho ST (2014) An analytical model for the translaminar fracture toughness of fiber composites with stochastic quasi-fractal fracture surfaces. J Mech Phys Solids 66(1):78–102.
[28] Almansour FA, Dhakal HN, Zhang ZY (2018) Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Compo Sci Technol 154: 117-127.
[29] ASTM D5045-99 (2007) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. ASTM International, www.astm.org.
[30] Moslemi M, Khoshravan M (2015) Cohesive zone parameters selection for mode-I prediction of interfacial delamination. J Mech Eng 61(9): 507-516.