Prediction of chatter phenomenon in the internal turning process using the results of experimental tests and artificial neural network

Authors

1 Assistant professor., Mech. Eng., Shahrekord Branch, , Islamic Azad Univ., Shahrekord, Iran

2 3 Assistant Prof., Mech. Eng., Yazd Univ., Yazd, Iran.

Abstract

Machining is a complex process that many variables determine the result. Among them, tool vibration is a critical phenomenon because it causes unacceptable dimensional errors on the work pieces and a sharp reduction in tools life. Whereas the dynamic of the tool and the work piece depends on many parameters, it's very difficult to prediction tool vibration by using relationship and formulas. In this research, internal tuning experiments done with various parameters. Output of experiments shows occurrence or non- occurrence of chatter phenomenon by finishing surface shape, Fast Furrier transform and Spectral density of acceleration signal. Then, by writing a program with Matlab software, using different artificial neural networks, various processes are performed to make the program with highest efficiency between them and using it to predict chatter phenomenon this specific turning machine. Finally, for the validation of results, tests have been designed and planned. The results show that the predication of chatter phenomenon with an acceptable percentage is done correctly.

Keywords


[1] Quintana G, Ciurana J (2011) Chatter in machining processes: A review. Int J Mach Tools Manuf 51(5): 363-376.
[2] Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61: 27-47.
[3] Tansel IN, Wagiman A, Tziranis A (1991) Recognition of chatter with neural networks. Int J Mach Tools Manuf 31(4): 539-552.
[4] Tansel IN (1992) Modelling 3-D cutting dynamics with neural networks. Int J Mach Tools Manuf 32(6): 829-853.
[5] BY Tarng YS, Ma SC  (1995) Modeling of the process damping force in chatter vibration. Int J Mach Tools Manuf 35(7): 951-962.
[6] اسدیان اردکانی م ح، رازفر م ر ( 1388) پیش‏بینی وقوع پدیده چتر در فرایند فرزکاری با استفاده از شبکه‏های عصبی مصنوعی. دهمین کنفرانس مهندسی ساخت و تولید ایران، بابل.
[7] Abu-Zahra NH, Lange JH (2002) Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. Int J Adv Manuf Tech 20: 248-254.
[8] Kotaiah KR, Srinivas J, Babu K, Srinivas K (2010)  Prediction of optimal cutting states during inward turning: An experimental approach. Mater Manuf Process 25: 432-441.
[9] Saleem W, Zain-ul-abdein M, Ijaz H, Salmeen Bin Mahfouz A, Ahmed A, Asad M, Mabrouki T (2017) Computational analysis and artificial neural network optimization of dry turning parameters—AA2024-T351. Appl Sci 7(6): 642-663.
[10] Umetne EZIM, Ali ZUOSK, Prevleko K (2014) Experimental design and artificial neural network model for turning the 50CrV4 (SAE 6150) alloy using coated carbide/cermet cutting tools. Mater Tech 48(2): 227-236.
[11] Shrivastava Y, Singh B (2019) Stable cutting zone prediction in computer numerical control turning based on empirical mode decomposition and artificial neural network approach. T I Meas Control 41(1): 193-209.
[12] Shrivastava Y, Singh B (2018) Stable cutting zone prediction in CNC turning using adaptive signal processing technique merged with artificial neural network and multi-objective genetic algorithm. Eur J Mech A-Solid 70: 238-248.
[13] Shrivastava Y, Singh B (2017) Application of EEMD in Determining Tool Chatter Behavior using ANN Approach. Proceeding of 10th International conference on precision, Meso, Micro and Nano Engineering, December 07-09, Indian institute of technology madras, Chennai-600 036, India.
[14] Khalili M, Rafeeyan M, Abootorabi MM (2018) Quantitative analysis of forces in boring process and providing a new formula for calculation of tool-tip force. Iranian Journal of Manufacturing Engineering 4(2): 10-23. (in Persian)
[15] Khalili M, Rafeeyan M, Abootorabi MM (2019) The new approach to practical predicting and controlling the chatter phenomenon in the internalturning. Iranian Journal of Manufacturing Engineering 5(4): 56-73. (in Persian)
[16] خلیلی م، رفیعیان م، ابوترابی م م (1394) بررسی تجربی اثر سرعت برشی بر ارتعاش چتر در‏ فرایند داخل‏ تراشی. نشریه علمی ترویجی صوت و ارتعاش 52-39 :(8)4.
[17] نگارستانی ا، ابوالبشیری م ح (1396) بهینه‏سازی فرایند فرزکاری انگشتی برای رسیدن به زبری سطح مینیمم با ترکیب شبکه عصبی مصنوعی و الگوریتم ژنتیک. مجله علمی پژوهشی مکانیک سازه‏ها و شاره‏ها 91-81 :(2)7.