Aircraft Actuator Fault Diagnosis and Isolation using Robust Incremental Nonlinear Dynamic Inversion

Authors

1 Faculty of Electrical and Robotic, Eng

2 Faculty of Electrical Engineering Shahrood University of Technology

Abstract

One of the major faults accrued in the aircraft is corresponding to its actuators. In order to fault diagnosis and isolation in the aircraft actuator, this paper presents a new robust method based on the incremental nonlinear dynamic inversion, which is robust to the disturbance and uncertainties. The produced residual is robust to the system uncertainties, and the adaptive threshold is designed to evaluate this residual with fuzzy logic, which is altered in the presence of disturbance or variation in the input command to prevent faulty detection. Since this method requires the online knowledge of the upper bound of undesirable factors (disturbance and uncertainty) and the disturbance occurrence on the system, new equations is developed to calculate this bound and an innovative structure is suggested to detect the disturbance event. In order to evaluate the proposed method, it is simulated on the nonlinear dynamics of the Boeing-747 considering the coupling between the longitudinal and lateral dynamics, whereas the disturbance is applied on the three axes at different times and the rudder actuator fault is locked to the aircraft. Simulations verify that despite the uncertainty and disturbance, the following of the input commands is well performed and the timing of the operator's fault and the location of the operator is determined according to the adaptive threshold.

Keywords


[1] Simani S, Bonfe M (2004) Modelling and identification of residual generator functions for fault detection and isolation of a small aircraft. 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601).
[2]  Chadli M, et al. (2013) H−/H∞ fault detection filter design for discrete-time Takagi–Sugeno fuzzy system. Automatica 49(7): 1996-2005.
[3]  Yan K, et al. (2019) Extended state observer-based sliding mode fault-tolerant control for unmanned autonomous helicopter with wind gusts. IET Control Theory A 13(10): 1500-1513.
[4]  Bokor J, Balas G (2004) Detection filter design for LPV systems, a geometric approach. Automatica 40(3): 511-518.
[5]  Armeni S, Casavola A, Mosca E (2009) Robust fault detection and isolation for LPV systems under a sensitivity constraint. Int J Adapt Control 23(1): 55-72.
[6]  De Persis C, Isidori A (2001) A geometric approach to nonlinear fault detection and isolation. IEEE T Automat Contr 46(6): 853-865.
[7]  Gauthier JP, Kupka IA (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32(4): 975-994.
[8] رضوی ح، شهبازی و، ملک زاده م (1397) تاثیر وجود مشاهده‌گر اغتشاش روی سیستم‌های کنترلی با وجود اغتشاش. پنجمین کنفرانس بین‌المللی پژوهش‌های کاربردی در مهندسی برق، مکانیک و مکاترونیک. انجمن حرارتی برودتی ایران.
[9] عزیزآبادی ج، صدرنیا م، فاتح م (1393) طراحی رویتگر مود لغزشی به منظور تشخیص و جداسازی خطا در سیستم های دینامیکی غیرخطی. پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود.
[10] Staroswiecki M, Comtet-Varga G (2001) Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37(5): 687-699.
[11] Guernez C, et al. (1997) Extension of parity space to non linear polynomial dynamic systems. IFAC Proceedings Volumes 30(18): 857-862.
[12] Frisk E, Åslund J (2005) Lowering orders of derivatives in non-linear residual generation using realization theory. Automatica 41(10): 799-1807.
[13] Sadrnia M, Chen J, Patton R (1997) Robust H∞/μ observer-based residual generation for fault diagnosis. IFAC Proceedings Volumes 30(18): 155-161.
[14] Alcalay G, et al. (2018) An adaptive Extended Kalman Filter for monitoring and estimating key aircraft flight parameters. IFAC-PapersOnLine 51(24): 620-627.
[15] Dong Y (2019) Implementing deep learning for comprehensive aircraft icing and actuator/sensor fault detection/identification. Eng Appl Artif Intel 83: 28-44.
[16] Bateman F, Noura H, Ouladsine M (2011) Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV. IEEE T Aero Elec Sys 47(3): 2119-2137.
[17] Yang Y, Ding SX, Li L (2015) On observer-based fault detection for nonlinear systems. Syst Control Lett 82: 18-25.
[18] Jiang D, et al. (2018) Particle filtering for fault diagnosis in nonlinear plants based on adaptive threshold method. in 2018 37th Chinese Control Conference (CCC).
[19] مرغوبکار ع­ر، صدرنیا م (1395) طراحی و شبیه سازی سیستم تشخیص خطا برای هواپیمای بدون سرنشین مچان، به روش جایابی قطب. دومین کنفرانس بین المللی پژوهش در علوم و مهندسی.
[20] Yu X, Fu Y, Peng X (2017) Fuzzy logic aided fault-tolerant control applied to transport aircraft subject to actuator stuck failures. IEEE T Fuzzy Syst PP(99): 1-1.
[21] Liu Y, et al. (2017) A new fault tolerant strategy for commercial aircraft based on adaptive control. International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC).
[22] Shin JY, Gregory I (2007) Robust gain-scheduled fault tolerant control for a transport aircraft. IEEE International Conference on Control Applications Singapore 1209-1214.
[23] Yu B, Zhang Y (2016) Fault-tolerant control of a boeing 747-100/200 based on a laguerre function-based MPC scheme. IFAC-PapersOnLine 49(17): 58-63.
[24] Richardson TS, et al. (2011) Analysis of the Boeing 747-100 using CEASIOM. Prog Aerosp Sci 47(8): 660-673.
[25] Caliskan F, et al. (2009) Estimation of actuator fault parameters in a nonlinear Boeing 747 model using a linear two-stage Kalman filter. IFAC Proceedings Volumes 42(8): 1408-1413.
[26] Ciubotaru B, et al. (2006) Christophe, fault tolerant control of the Boeing 747 short-period mode using the admissible model matching technique. Zhang, Hong-Yue, in Fault Detection, Supervision and Safety of Technical Processes, Elsevier Science Ltd: Oxford. p. 819-824.
[27] Rosa P, et al. (2015) A mixed-μ approach to the integrated design of an FDI/FTC system applied to a high-fidelity industrial airbus nonlinear simulator. IFAC-PapersOnLine 48(21): 988-993.
[28] Goupil P (2011) AIRBUS state of the art and practices on FDI and FTC in flight control system. Control Eng Pract 19(6): 524-539.
[29] Goupil P (2009) AIRBUS state of the art and practices on FDI and FTC. IFAC Proceedings Volumes 42(8): 564-572.
[30] Zheng F, et al. (2017) Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults. J Syst Eng Electron 28(2):322-377.
[31] Nguyen DT, Saussie D, Saydy L (2017) Quaternion-based robust fault-tolerant control of a quadrotor UAV. International Conference on Unmanned Aircraft Systems (ICUAS).
[32] Castaneda H, et al. (2017) Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans 66: 226-232.
[33] Qi Z, et al. (2016) An active Fault-Tolerant Control method for a low-cost and fixed-wing UAV. IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC).
[34] Yu B, et al. (2015) MPC-based FTC with FDD against actuator faults of UAVs.15th International Conference on Control, Automation and Systems (ICCAS).
[35] Qian M, et al. (2015) Dynamic surface fault tolerant tracking control design for UAV with transient performance. IFAC-PapersOnLine 48(21): 208-213.
[36] Merheb AR, et al. (2015) Fault severity based Integrated Fault Tolerant Controller for quadrotor UAVs. International Conference on Unmanned Aircraft Systems (ICUAS).
[37] Caliskan F Hajiyev C (2015) Reconfigurable control of an UAV against sensor/actuator failures. IFAC-PapersOnLine 48(9): 7-12.
[38] Benrezki RR, et al. (2015) Passive fault tolerant control of quadrotor UAV using a nonlinear PID. IEEE International Conference on Robotics and Biomimetics (ROBIO).
[39] Avram RC, et al. (2015) IMU sensor fault diagnosis and estimation for quadrotor UAVs. IFAC-PapersOnLine 48(21): 380-385.
[40] Qu Q, et al. (2014) Fault tolerant control for UAV with finite-time convergence. 26th Chinese Control and Decision Conference (2014 CCDC).
[41] Zhaohui C, Noura H (2013) A composite Fault Tolerant Control based on fault estimation for quadrotor UAVs. IEEE 8th Conference on Industrial Electronics and Applications (ICIEA).
[42] Xu Q, et al. (2013) Adaptive fault-tolerant control design for UAVs formation flight under actuator faults.  International Conference on Unmanned Aircraft Systems (ICUAS).
[43] Péni T, et al. (2013) Supervisory fault tolerant control of the GTM UAV using LPV methods. Conference on Control and Fault-Tolerant Systems (SysTol).
[44] Ducard G (2013) The SMAC Fault Det. and Isolation Scheme: Discussions, improvements, and application to a UAV. Conference on Control and Fault-Tolerant Systems (SysTol).
[45] Rago C, et al. (1998) Failure detection and identification and fault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV. in Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[46] White A, Karimoddini A (2020) Event-based diagnosis of flight maneuvers of a fixed-wing aircraft. Reliab Eng Syst Safe 193: 106609.
[47] Ding S (2003) Model‐based fault diagnosis in dynamic systems using identification techniques. Silvio Simani, Cesare Fantuzzi and Ron J. Patton, Springer: London, 282pp. ISBN 1‐85233‐685‐4.
[48] Chen J, Patton R (1999) Robust model-based fault diagnosis for dynamic systems kluwer academic publishers. Boston, Dordrecht, London.
[49] Ding X, Frank P (1991) Frequency domain approach and threshold selector for robust model-based fault detection and isolation. in Fault Detection, Supervision and Safety for Technical Processes. Elsevier 271-276.
[50] Drew MC, et al. (2020) Multi-objective gust load alleviation control designs for an aeroelastic wind tunnel demonstration wing. AIAA Scitech 2020 Forum, Orlando, FL.
[51] Misra G, Bai X (2019) Robust disturbance observer-based control for relative attitude tracking using sum-of-squares programming. J Guid Control Dynam 1-8.
[52] Yong K, Chen M, Wu Q (2020) Anti-disturbance control for nonlinear systems based on interval observer. IEEE T Ind Electron 67(2): 1261-1269.
[53] صباغی فرشی س، اکبری د (2019) کاربرد روش تداخل‌سنجی لیزری برشی در بازرسی غیر مخرب و      تخمین اندازه عیوب صفحه‌ای. مجله مکانیک سازه‌ها و شاره‌ها 14-1 :(4)9.
[54] Marzat J, et al. (2012) Model-based fault diagnosis for aerospace systems: a survey. P I Mech Eng G-J Aer 226(10): 1329-1360.
[55] Napolitano MR, An Y, BA (2000) Seanor, A fault tolerant flight control system for sensor and actuator failures using neural networks. Aircraft Design 3(2): 103-128.
[56] Hallouzi R, et al. (2006) Model weight estimation for FDI using convex fault models. IFAC Proceedings Volumes 39(13): 795-800.
[57] Lu P, et al. (2016) Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion. Control Eng Pract 57: 126-141.
[58] Liu Z, et al. (2006) Flight control of unpowered flying vehicle based on robust dynamic inversion. 2006 Chinese Control Conference, Harbin.
[59] Wang YC, et al. (2015) A unified approach to nonlinear dynamic inversion control with parameter determination by eigenvalue assignment. Math Probl Eng 2015.
[60] Sun B, Van Kampen EJ (2020) Incremental model-based global dual heuristic programming with explicit analytical calculations applied to flight control. Eng Appl Artif Intel 89: 103425.
[61] Zhang S, Meng Q (2019) An anti-windup INDI fault-tolerant control scheme for flying wing aircraft with actuator faults. ISA T 93: 172-179.
[62] Agrawal A, et al. (2008) An adaptive fuzzy thresholding algorithm for exon prediction. IEEE International Conference on Electro/Information Technology.
[63] Nelson RC (1998) Flight Stability and Automatic Control. McGraw-Hill Education.
[64] ساداتی ح (1395) طراحی سیستم تقویت کننده کنترل هواپیما با استفاده از وارون‌دینامیک و شبکه‌عصبی. نشریه علمی پژوهشی مهندسی هوانوردی 97-85: (2)18.
[65] Autenrieb J, Shin HS, Bacic M (2019) Development of a neural network-based adaptive nonlinear dynamic inversion controller for a tilt-wing VTOL aircraft. in 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS).