Study of Primary and Secondary Nonlinear Resonances of Nanobeam Based on Nonlocal Strain Gradient Theory

Authors

1 M. Sc. Student, Mech Eng, Quchan University of Technology, Quchan, Iran

2 Assis Prof, Mech Eng, Quchan University of Technology, Quchan, Iran

Abstract

In this paper, the nonlinear forced vibrations of nonlocal Euler-Bernoulli nanobeam that is utilized in nanoelectromechanical systems are studied using the analytical method of multiple time scales. Based on non-linear strain gradient elasticity theory, governing equation of Euler-Bernoulli nanobeam with von-karman geometric nonlinearity is derived using Hamilton principle. In the next step, using the Galerkin method, the partial differential governing equations for simply supported boundary conditions are reduced to time variable ordinary nonlinear differential equation. Subsequently, the nonlinear forced vibration equation is solved using a multiple time scalar method. After solving the nonlinear excited equation, primary and secondary resonances of nonlocal nanobeam are studied. The region of acceptable sub-harmonic responses is identified and for different values of nonlocal parameter, the frequency response curves and response amplitudes versus excitation amplitude is plotted in all resonances as primary, super-harmonic and sub-harmonic. These results show that using nonlocal strain gradient theory is a fundamental necessity for analyzing nonlinear vibration of nanobeams. The results of this paper can be used to improve the design and optimization of nanoelectromechanical systems.

Keywords


[1] Chaterjee G Pohit (2009)  A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322(4): 969-986.
[2] ملکی م، نحوی ح، غیور م (2017) تحلیل پاسخ فرکانسی نانوتشدیدگرالکترو مکانیکی بر اساس تئوری الاسیتیسه غیر محلی. مدل سازی در مهندسی       322-315 :(50)15.     
[3] اندخشیده ع، مالکی س، مرعشی س­ص (2018) بررسی پدیده‌ی غیرخطی ولتاژ کشیدگی در میکروتیر‌های هدفمند تحت بارگذاری الکترواستاتیک. مجله مکانیک سازه‌ها و شاره‌ها 151-137 :(3)8.
[4] قادری ش، طهماسبی پور م، عباسپور ثانی ا، مدرس م (2018) طراحی و شبیه سازی شتاب سنج حرارتی MEMS با حساسیت بهینه شده و قابلیت اندازه‌گیری شتاب در دو محور. مجله مکانیک سازه‌ها و شاره‌ها     24-13 :(2)8.
[5] Mahdavi MH, Farshidianfar A, Tahani M,    Mahdavi S, Dalir H (2008) A more comprehensive modeling of atomic force microscope cantilever. Ultramicroscopy 109(1): 54-60.
[6] Currano LJ, Yu M, Balachandran B (2010) Latching in a MEMS shock sensor: Modeling and experiments. Sensor Actuat A-Phys 159(1): 41-50.
[7] Martı́nez-Criado G (2016) Application of micro-and nanobeams for materials science, Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications 1505-1539.
[8] Liu W, Li T, Yang H, Jiao J, Wang Y (2006) Silicon nano beam fabricated by MEMS technology and its electronic properties. in:  2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE 932-935.
[9] Ice GE, Budai JD, Pang JW (2011) The race to x-ray microbeam and nanobeam science. Science 334(6060): 1234-1239.
[10] Peters TJ, Tichem M (2015) Fabrication and characterization of suspended beam structures for SiO2 photonic MEMS. J Micromech Microeng 25(10): 105003.
[11] Ashok A, Kumar PM, Singh SS, Raju P, Pal P, Pandey AK (2018) Achieving wideband micromechanical system using coupled non-uniform beams array. Sensor Actuat A-Phys 273: 12-18.
[12] Farajpour A, Ghayesh MH, Farokhi H (2018) A review on the mechanics of nanostructures, International Journal of Engineering Science, 133 () 231-263.
[13] Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5): 425-435.
[14] Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2-8): 288-307.
[15] Wang Q, Liew K (2007) Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures. Phys Lett A 363(3): 236-242.
[16] Wang YZ, Li FM (2014) Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int J Nonlinear Mech 61: 74-79.
[17] گلمکانی م­ا، رضاطلب ج (2013) خمش استاتیکی نانو صفحات ارتوتروپیک در محیط الاستیک، براساس مدل‌های غیر موضعی محیط پیوسته. مجله مکانیک سازه‌ها و شاره‌ها 66-53 :(3)3.
[18] Yang F, Chong A, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10): 2731-2743.
[19] Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8): 1477-1508.
[20] Andakhshideh A, Maleki S, Karamad H (2019) Size-dependent nonlinear vibration of non-uniform microbeam with various boundary conditions. Modares Mechanical Engineering 18(9): 189-198.
[21] قربانپور آرانی ع، عبدالهیان م، کلاهچی ر (2014) کمانش الکتروترمومکانیکی نانوتیر پیزوالکتریک با استفاده از تئوری‌های الاستیسیته گرادیان کرنشی و تیر ردی. مجله مکانیک سازه‌ها و شاره‌ها 33-23 :(3)4.
[22] Alinaghizadeh F, Shariati M, Fish J (2017) Bending analysis of size-dependent functionally graded annular sector microplates based on the modified couple stress theory. Appl Math Model 44: 540-556.
[23] Hosseini-Hashemi S, Sharifpour F, Ilkhani MR (2016) On the free vibrations of size-dependent closed micro/nano-spherical shell based on the modified couple stress theory. Int J Mech Sci 115: 501-515.
[24] Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78: 298-313.
[25] Lu L, Guo X, Zhao J (2017) Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int J Eng Sci 116: 12-24.
[26] Liu H, Lv Z, Wu H (2019) Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos Struct 214: 47-61
[27] Ebrahimi F, Barati MR (2017) Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos Struct 159: 433-444.
[28] Nayfeh AH, Mook DT (2008) Nonlinear oscillations. John Wiley & Sons.
[29] Bauchau O, Bottasso C (1994) Space-time perturbation modes for non-linear dynamic analysis of beams. Nonlinear Dynam 6(1): 21-35.
[30] Imboden M, Mohanty P (2014) Dissipation in nanoelectromechanical systems. Phys Rep 534(3): 89-146.