Design of a Micro-Separator for Circulating Tumor Cells (CTCs) from Blood Flow Using Hybrid Pinched Flow Fractionation (PFF) and Dielectrophoresis Methods

Authors

1 Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, Tehran, Iran

2 Member of Academic Staff / Faculty of Mechanical and Energy Engineering, Shahid Beheshti University (SBU)

3 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University

Abstract

Separation of blood cells has a widespread application in medical sciences. Separation of these cells helps identifying their properties. Knowing the properties of circulating tumor cell’s (CTC) and the effect of different drugs on them can significantly help to develop and improve patient’s treatment methods. During recent years, microfluidic devices for separation and sorting of these cells have been significantly developed. There are different methods for cell sorting. In this research, the size and the electrical properties of cells have been considered as the main criteria for cell separation and by combining pinched flow fractionation (PFF) as a passive method with dielectrophoresis as an active method, the separation of MDA-435 mammalian circulating tumor cell from white and red blood cells is investigated. These cells have small size differences where in pinched flow fractionation, incapability to separate particles of similar sizes is a major challenge. In this research, dielectrophoresis force creates a gap between circulating tumor cells and white blood cells in the pinched segment and after hydrodynamic expansion in the broadened segment, circulating tumor cells, white blood cells, and red blood cells will be collected in their specific outlet branches. Results show that this hybrid method can separate tumor cells effectively.

Keywords


[1] غفاری ع، نظری م، خزائی م و بهمئی ب (1393) ﺗﻐﻴﻴﺮ در دﻳﻨﺎﻣﻴﻚ ﻳﻚ ﺳﻴﺴﺘﻢ ﺑﺎ اﺳﺘﻔﺎده از ورودیﻫﺎی زﻣﺎن ﻣﺤﺪود: ﻛﺎرﺑﺮد در درﻣﺎن و ﻣﺪﻟﺴﺎزی ﺳﺮﻃﺎن. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها      91-79 :(1)4.
[2] دستورانی هـ، جهان­نما م، اسلامی مجد ع (1395) مطالعه عددی فرآیند امولوسیون­سازی در دستگاه میکروسیال متقاطع. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 284-273 :(1)6.
[3] نیازی س، مجیدی س، مجدم م (1397) شبیه­سازی عددی تولید قطره در میکروکانال با هندسه متمرکز کننده. بیست و ششمین همایش سالانه بین­المللی انجمن مهندسان مکانیک ایران.
[4] Hyun KA,  Jung HI (2014) Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip 14(1): 45-56.
[5] Yan S, Zhang J, Yuan D, Li W (2017) Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38(2): 238-249.
[6] Vig AL (2010) Pinched flow fractionation–technology and application (Doctoral Dissertation, Ph. D. Thesis, Department of Micro-and Nanotechnology Technical University of Denmark).
[7] Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18): 5465-5471.
[8] Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7): 778-784.
[9] Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation.    Appl Phys Lett 93(20): 203507.
[10] Nho HW, Yoon TH (2013) Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Lab Chip 13(5): 773-776.
[11] Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18): 2410-2427.
[12] Lam YC, Ling SH, Chan WY, Chian KS (2015) Dielectrophoretic cell motion model over periodic microelectrodes with unit-cell approach. Microfluidics Nanofluidics 18(5-6): 873-885.
[13] Bisceglia E, Cubizolles M, Trainito CI, Berthier J, Pudda C, Français O, Le Pioufle B (2015) A generic and label free method based on dielectrophoresis for the continuous separation of microorganism from whole blood samples. Sens Actuators B Chem 212: 335-343.
[14] Ali H, Park CW (2016) Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device. Korea-Aust Rheol J 28(4): 327-339
[15] Hadady H, Redelman D, Hiibel SR, Geiger EJ (2016) Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophys 3(3): 398-414.
[16] Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11(5): 997.
[17] Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: A focus on affinity based, dielectrophoresis, and hydrophoresis. Electrophoresis 34(7): 1028-1041.
[18] Pethig R (2010) Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4(2): 022811.
[19] Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory on a chip systems. Electrophoresis 23(16): 2569-2582.
[20] Alazzam A, Mathew B, Alhammadi F (2017) Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J Sep Sci 40(5): 1193-1200.
[21] Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 35(5): 691-713.
[22] Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PR (1999) Cell separation on microfabricated electrodes using dielectrophoretic/ gravitational field-flow fractionation. Anal Chem 71(5): 911-918.
[23] Liqun W, Lin-Yue L, Kian-Meng L (2012) Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6(1): 014113.
[24] Yang J, Huang Y, Wang X, Wang XB, Becker FF, Gascoyne PR (1999) Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys J 76(6): 3307-3314.
[25] Piacentini N, Mernier G, Tornay R, Renaud P (2011) Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3): 034122.
[26] Kralj JG, Lis MT, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14): 5019-5025.
[27] Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10): 426-432.
[28] Demierre N, Braschler T, Linderholm P,      Seger U, Van Lintel H, Renaud P (2007) Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7(3): 355-365.
[29] Mernier G, Piacentini N, Braschler T, Demierre N, Renaud P (2010) Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10(16): 2077-2082.
[30] Markx GH, Pethig R, Rousselet J (1997) The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation. J Phys D Appl Phys 30(17): 2470.
[31] Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 35(5): 691-713.
[32] Park S, Zhang Y, Wang TH, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17): 2893-2900.
[33] Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5: 147-209.