Analysis of functionally graded beams with variable thickness using first-order shear deformation theory subjected to mechanical and thermal loads

Authors

null

Abstract

In this research, thermoelastic analysis of the beams with variable thickness made of functionally graded materials (FGM) has been carried out. The beam geometry is similar to a turbine blade. Loading is composed of a transverse distributed force, a specific temperature field and an inertia body force due to rotation. Tip of the beam is free and root of the beam is fixed. Mechanical and thermal properties are assumed to be variable along the longitudinal direction of the beam based on the power law variation. Using first-order shear deformation theory, linear strain–displacement relations and Generalized Hooke’s law, a system of second order differential equation is obtained. Using division method, differential equations are solved. For each division, longitudinal and transverse deflections and longitudinal, shear and effective stresses are obtained. For six different nonhomogeneous distributions, analyses were carried out based on the power law variation. The results show that beam made of FGM with positive and further index of non homogeneity, maximum longitudinal and transverse deflections and longitudinal, shear and effective stresses would be less.

Keywords


[1] Oh Y, Yoo HH (2016) Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. Int J Mech Sci 119: 68-79.
[2] Kapania RK, Raciti S (1989) Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling. AIAA J 27(7): 923-935.
[3] Shi G, Lam KY, Tay TE (1998) On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element. Compos Struct 41(2): 159-165.
[4] Sankar BV (2001) An elasticity solution for functionally graded beams. Compos Sci Tech 61(5): 689-696.
[5] Sankar BV, Tzeng JT (2002) Thermal Stresses in Functionally Graded Beams. AIAA J 40(6): 1228-1232.
[6] Chakraborty A, Gopalakrishnan S, Reddy J N (2003) A new beam finite element for the analysis of functionally graded materials. Int J Mech Sci 45(3): 519-539.
[7] Kadoli R, Akhtar K, Ganesan N (2008) Static analysis of functionally graded beams using higher order shear deformation theory. Appl Math Modelling 32(12): 2509-2525.
[8] Li XFA (2008) Unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J Sound Vib 318(4): 1210-1229.
[9] Kiani Y, Eslami MR (2010) Thermal buckling analysis of functionally graded material beams. Int J Mech Materi Design 6(3): 229-238.
[10] Xu Y, Zhou D (2012) Two-dimensional thermoelastic analysis of beams with variable thickness subjected to thermo-mechanical loads. Appl Math Modelling 36(12): 5818-5829.
[11] Nguyen TK, Vo TP, Thai HT (2013) Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Compos B: Eng 55 147-157.
[12] Niknam H, Fallah A, Aghdam MM (2014) Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading. Int J Nonlinear Mech 65: 141-147.
[13] Arefi M, Faegh RK, Loghman A (2016) The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell. J Therm Stresses 39(12): 1539-1559.
[14] Heshmati M, Daneshmand F (2018) Vibration analysis of non-uniform porous beams with functionally graded porosity distribution. Proc Inst Mech Eng, Part L: J Mater: Design Appl  1464420718780902.
[15] Zappino E, Viglietti A, Carrera E (2018) Analysis of tapered composite structures using a refined beam theory. Compos Struct 183 42-52.
[16] Poursaeidi E, Bakhtiari H (2014) Fatigue crack growth simulation in a first stage of compressor blade. Eng Fail Anal 45(Supplement C): 314-325.
[17] Zenkour AM (2009) The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates. International J Appl Mech 1(04): 667-707.
[18] Arefi M, Zenkour AM (2017) Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory. J Intel Mater Syst Struct 0(0): 1045389X17733333.
[19] Kordkheili SAH, Naghdabadi R (2007) Thermoelastic analysis of a functionally graded rotating disk. Compos Struct 79(4): 508-516.
[20] Loghman A, Ghorbanpour Arani A, Shajari A R, Amir S (2011) Time-dependent thermoelastic creep analysis of rotating disk made of Al–SiC composite. Arch Appl Mech 81(12): 1853-1864.
[21] Loghman A, Hammami M, Loghman E (2017) Effect of the silicon-carbide micro- and nanoparticle size on the thermo-elastic and time-dependent creep response of a rotating Al–SiC composite cylinder. J Appl Mech Tech Phys 58(3): 443-453.
[22] لقمان ع، اعظمی م، تورنگ ح (2016) تحلیل الکترومگنتوترمومکانیک دیسک دوار پلیمری هوشمند تقویت شده با نانولوله‌های کربنی چندجداره با رفتار غیرخطی. مجله مکانیک سازه­ها و شاره­ها 108-97 :(2)6.
[23] محمدی هویه هـ، صفری م، لقمان ع (2018) تحلیل خزش وابسته به زمان و پیش بینی عمر خزشی استوانه های چرخان توخالی ساخته شده از فولاد آلیاژی به کمک معادله ساختاری گستره تتا و پارامترشکست لارسن میلر. مجلهمهندسی مکانیک امیرکبیر 684-673 :(4)49.  
[24] Poursaeidi E, Aieneravaie M, Mohammadi MR (2008) Failure analysis of a second stage blade in a gas turbine engine. Eng Fail Anal 15(8): 1111-1129.
[25] ABAQUS Documentation User‘s Manual.