A New Intelligent Method for Bearing Fault Detection Based on Co-integration Concept and Selecting the Optimal Feature Set at Time-Varying Speed Conditions

Authors

1 Ph.D. Student, Mech. Eng., Guilan Univ., Rasht, Iran

2 MSc of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, Iran

3 Prof., Dep. Of Mech. Eng., Guilan Univ., Rasht, Iran

Abstract

In this paper, a new hybrid intelligent method is suggested for the bearing fault detection at time – varying speed conditions. The vibration signals have been collected for two states as healthy bearing and defected inner race under variable speeds. In this study, the ensemble empirical mode decomposition (EEMD) technique and Johanson trace method are utilized for extracting the co-integration relationships from the vibration data. Then, the feature matrix corresponding to the co-integration relationships is calculated using the wavelet packet decomposition (WPD) method, and the time -domain statistical features. In the next stage,the compensation distance evaluation technique (CDET) has been used to determine the preselected feature subsets. The preselected features are utilized as input data of the support vector machine (SVM) to predict the bearing state. Finally, The optimal SVM parameters and the optimal feature subsets are determined using the binary particle swarm optimization (BPSO) algorithm. The obtained results demonstrate that the optimal features are well able to differentiate between different bearing states at time-varying speeds. Comparing the results of this article with other fault detection methods indicates the ability of the proposed method.

Keywords


[1]  Lei Y, Liu Z, Ouazri J, Lin J (2017) A fault diagnosis method of rolling element bearings based on CEEMDAN. Proc Inst Mech Eng Pt C J Mechan Eng Sci 231(10): 1804-1815.
[2]  Song M, Xiao S (2017) A fault diagnosis method of gear based on SVD and improved EEMD. In Intelligent Computing, Networked Control, and Their Engineering Applications, Springer, Singapore 65-74.
[3]  Xu F, Wai Tat TSE P, Fang YJ, Liang JQ (2018) A fault diagnosis method combined with compound multiscale permutation entropy and particle swarm optimization–support vector machine for roller bearings diagnosis. Proc Inst Mech Eng J 1350650118788929.
[4]  Tabrizi A, Garibaldi L, Fasana A, Marchesiello S (2015) Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica 50(3): 865-874.
[5] باقری ا، نظامیوند چگینی س، رمضانی دشتمیان م، فرید نجفی (1397) عیب یابی چرخدنده بر پایه انتخاب مناسب ترین ویژگی به کمک الگوریتم بهینه سازی ازدحام ذرات. مکانیک سازه­ها و شاره­ها 64-49 :(3)8.
[6]  Yang CY, Wu TY (2015) Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement 61: 75-87.
[7]  Ziani R, Felkaoui A, Zegadi R (2017) Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion. J Intell Manuf 28(2): 405-417.
[8]  Fatima S, Mohanty AR, Naikan VNA (2015) Multiple fault classification using support vector machine in a machinery fault simulator. In Vibration Engineering and Technology of Machinery 1021-1031.
[9]  Zhang X, Zhang Q, Chen M, Sun Y, Qin X, Li H (2018) A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method. Neurocomputing 275: 2426-2439.
[10]  Yin H, Qiao J, Fu P, Xia XY (2014) Face feature selection with binary particle swarm optimization and support vector machine. J Inf Hiding Multimed Signal Process 5(4): 731-739.
[11]  Tabrizi AA, Al-Bugharbee H, Trendafilova I, Garibaldi L (2017) A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica 52(4-5): 1201-1217.
[12]  Huang W, Kong F, Zhao X (2018) Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory. J Intell Manuf 29(6): 1257-1271.
[13]  Nezamivand Chegini S, Bagheri A, Najafi F (2019) A new intelligent fault diagnosis method for bearing in different speeds based on the FDAF-score algorithm, binary particle swarm optimization and support vector machine. Soft Comput.
[14]  نظامیوندچگینی س، باقری ا، نجفی ف، (1398) روش ترکیبی هوشمند جدید برای عیب‌یابی یاتاقان بر پایه     بهبود روش انتخاب ویژگی ارزیابی جبران فاصله و      ماشین بردار پشتیبان. مجله مهندسی مکانیک مدرس         875-865 :(4)19.
[15]  Yan X, Jia M (2018) A novel optimized          SVM classification algorithm with multi-    domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 313: 47-64.
[16]  Vakharia V, Gupta VK, Kankar PK (2016) Bearing fault diagnosis using feature ranking methods and fault identification algorithms. Procedia Eng 144: 343-350.
[17]  Attoui I, Fergani N, Boutasseta N, Oudjani B, Deliou A (2017) A new time–frequency method for identification and classification of ball bearing faults. J Sound Vib 397: 241-265.
[18]  Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Sci 454 (1971): 903-995.
[19] Wu Z, Huang N (2009) Ensemble empirical     mode decomposition: a noise – assisted data analysis method. Adv Adapt Data Anal 1(1):        1-41.
[20]  Johansen S (1995) Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, Oxford.
[21]  Dong S, Sun D, Tang B, Gao Z, Yu W, Xia M (2014) A fault diagnosis method for rotating machinery based on PCA and Morlet kernel SVM. Math Probl Eng.
[22]  Yaguo L, Zhengjia H, Yanyang Z, Xuefeng C (2008) New clustering algorithm-based fault diagnosis using compensation distance   evaluation technique. Mech Syst Signal Pr 22: 419-435.
[23]  Vapnik V (1995) The nature of statistical learning theory. Springer Verlag, New York.
[24]  Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK 69-73.
[25]  Nezamivand Chegini S, Bagheri A, Najafi F (2018) PSOSCALF: A new hybrid PSO based on sine cosine algorithm and Levy flight for solving optimization problems. Appl Soft Comput.