[1] Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14: 6.
[2] Buguin A, Li MH, Silberzan P, Ladoux B, Keller P (2006) Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc 128: 1088-1089.
[3] Hilber W (2016) Stimulus-active polymer actuators for next-generation microfluidic devices. J Apply Phys 122: 751.
[4] Bruin GJM (2000) Recent developments in electrokinetically driven analysis on microfabricated devices. J Electrophoresis 21: 3931-3951.
[5] Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. J Angew Chem Int Ed 50: 1890-1895.
[6] Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows fundamentals and simulation. Textbook, Springer, New York.
[7] Tseng S, Tai Y-H, Hsu J-P (2013) Electrokinetic flow in a pH-regulated,cylindrical nanochannel containing multiple ionic species. J Microfluid Nanofluidics 15: 847-857.
[8] Marconi UMB, Monteferrante M, Melchionna S (2014) Electro-osmoticflow in coated nanocapillaries: A theoretical investigation. Phys Chem 16: 25473-25482.
[9] De S, Bhattacharyya S, Hardt S (2015) Electroosmotic flow in a slit nanochannel with super hydrophobic walls. J MicrofluidNanofluidics 19: 1465-1476.
[10] Sadeghi M, Saidi MH, Sadeghi A (2017) Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel. J Phys Fluids 29: 62002.
[11] Wang M, Kang Q (2009) Electrokinetic Transport in Microchannels with Random Roughness. J Anal Chem 81: 2953-2961.
[12] Wang X, Cheng C, Wang S (2009) Electroosmotic pumps and their applications in microfluidic systems. J Microfluid Nanofluidics 6: 145-162.
[13] Cao Z, Yuan L, Liu Y-F, (2012) Microchannel plate electro-osmotic pump. J Microfluid Nanofluidics 13: 279-288.
[14] Gao M, Gui L (2016) Electroosmotic flow pump by and advances in micro fluidics–new applications in biology, energy, and materials sciences.
[15] Gao M, Gui L (2014) A handy liquid metal based electroosmotic flow pump. J Lab Chip 14: 1866-1872.
[16] Bonome EL, Cecconi F, Chinappi M (2017) Electroosmotic flow through an hemolysin nanopore. J MicrofluidNanofluidics 21: 96.
[17] Dasgupta PK, Liu S (1994) Electroosmosis: A reliable fluid propulsion system for flow injection analysis. J Anal Chem 66:1792-1798.
[18] Kirby BJ, Shepodd TJ, Hasselbrink F (2002) Voltage-addressable on/offmicrovalves for high-pressure microchip separations. J Chromatogr A 979: 147-154.
[19] Patel KD, Bartsch MS, McCrink MH (2008) Electro kinetic pumping of liquid propellants for small satellite microthrusterapplications. J Sensors Actuators B 132: 461-470.
[20] Piyasenaa ME, Newbya R, Millera TJ, Shapirob B, Smelaa E (2009) Electroosmotically driven microfluidic actuators. Sens Actuators B: Chem 141(1).
[21] Duong-Hong D, Wang J-S, Liu GR (2008) Dissipative particledynamics simulations of electroosmotic flow in nano-fluidic devices. J MicrofluidNanofluidics 4: 219-225.
[22] Bianchi F, Ferrigno R, Girault HH (2000) Finite element simulation of anelectroosmotic-driven flow division at a T-junction of micro scaled imensions. J Anal Chem 72: 1987-1993.
[23] Gao Y, Wong TN, Chai JC (2005) Numerical simulation of two-fluidelectroosmotic flow in microchannels. J Int J Heat Mass Transf 48: 5103-5111.
[24] Shamloo A, Madadelahi M, Abdorahimzadeh S (2017) Three-dimensional numerical simulation of a novel electroosmotic micromixer. J Chem Eng Process Intensif 119: 25-33.
[25] Zimmerman WB, Rees JM, Craven TJ (2006) Rheometry of non-newtonian electrokinetic flow in a microchannel T-junction. J Microfluid Nanofluidics 2: 481-492.
[26] Tessier F, Slater G (2005) Control and quenching of electroosmoticflowwith end-grafted polymer chains. J Macromolecules 38: 6752-6754.
[27] Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. J Europhys Lett 19: 155-160.
[28] Steiner T, Cupelli C, Zengerle R (2009) Simulation of advanced microfluidic systems with dissipative particle dynamics. J Microfluid Nanofluidics 7: 307-323.
[29] Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107: 4423-4435.
[30] Duong-Hong D, Phan-Thien N, Fan X (2004) An implementation of noslipboundary conditions in DPD. J Comput Mech 35: 24-29.
[31] Zakeri R, Lee ES (2014) Simulation of nano polymer chain sensor in electroosmotic flow using dissipative particle dynamics (DPD) method. ASME, International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canad.
[32] Chatterjee A, Wu L (2008) Predicting rheology of suspensions of spherical and non-spherical particles using dissipative particle dynamics (DPD): methodology and experimental validation. J Mol Simul 34(3): 243-250.
[33] Zhou Y, Long X, Zeng Q (2012) Effect of the angular potential on the temperature control in dissipative particle dynamics simulations. J Mol Simul 38(12): 961-969.
[34] Mukhopadhyay S, Abraham J (2009) A particle-based multiscale model for submicron fluid flows. J Phys Fluids 21: 027102.
[35] Nikunen P, Karttunen M, Vattulainen I (2003) How would you integrate the equations of motion in dissipative particle dynamics simulations? J Comput Phys Commun 153: 407-423.
[36] Tian F, Li B, Kwok Y (2004) Lattice Boltzmann simulation of electroosmotic flows in micro- and nanochannels. In: Proceedings of International Conference on MEMS, NANO and Smart Systems (ICMENS). Alberta, Canada, pp 294–299.