[1] Karbalaei R, Ghaffari A, Kazemi R, Tabatabaei H (2008) A new intelligent strategy to integrated control of AFS/DYC based on fuzzy logic. Int J Math Phys Eng Sci 1(1): 47-52.
[2] Hwang T, Park KA, Heo S, Lee S, Lee J (2008) Design of integrated chassis control logics for AFS and ESP. Int J Automot Techn 9(1): 17-27.
[3] Naraghi M, Roshanbin A, Tavasoli A (2010) Vehicle stability enhancement - an adaptive optimal approach to the distribution of tyre forces. P I Mech Eng D-J Aut 224(4): 443-453.
[4] Ding N, Taheri S (2010) An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method. Vehicle Syst Dyn 48(10): 1193-1213.
[5] Doumiati M, Sename O, Dugard L, Gaspar P, Szabo Z (2013) Integrated vehicle dynamics control via coordination of active front steering and rear braking. Eur J Control 19(2): 121-143.
[6] Jalali M, Khosravani S, Khajepour A, Chen S, Litkouhi B (2017) Model predective control of vehicle stability using coordinated active steering and differential brakes. Mechatronics 48: 30-41.
[7] Zhang J, Li J (2019) Integrated vehicle chassis control for active front steering and direct yaw moment control based on hierarchical structure. T I Meas Control41(9): 2428-2440.
[8] Ahn C, Kim B, Lee M (2012) Modeling and control of an anti-lock brake and steering system for cooperative control on split-μ surfaces. Int J Automot Techn 13(4): 571-581.
[9] Mirzaeinejad H, Mirzaei M, Kazemi R (2016) Enhancement of vehicle braking performance on split-μ roads using optimal integrated control of steering and braking systems. P I Mech Eng K-J Mul 230(4): 401-415.
[10] Song J (2012) Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic. Int J Automot Techn 13(4): 563-570.
[11] Aalizadeh B (2019) A neurofuzzy controller for active front steering system of vehicle under road friction uncertainties. T I Meas Control 41(4): 1057-1067.
[12] Zhang X, Xu Y, Pan M, Ren F (2014) A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations. Vehicle Syst Dyn 52(4): 475-503.
[13] Bagheri A, Azadi S, Soltani A (2017) A combined use of adaptive sliding mode control and unscented Kalman filter estimator to improve vehicle yaw stability. P I Mech Eng K-J Mul 231(2): 388-401.
[14] Paul D, Velenis E, Humbert F, at el (2019) Tyre–road friction μ-estimation based on braking force distribution. P I Mech Eng D-J Aut 233(8): 2030-2047.
[15] Novi T, Capitani R, Annicchiarico C (2019) An integrated artificial neural network–unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements. P I Mech Eng D-J Aut 233(7): 1864-1878.
[16] Ahmadi Jeyed H, Ghaffari A (2019) Nonlinear estimator design based on extended Kalman filter approach for state estimation of articulated heavy vehicle. P I Mech Eng K-J Mul 233(2): 254-265.
[17] باقری ا، آزادی ش، سلطانی ع (1396) بهبود پایداری چرخشی خودرو توسط سیستم ترمز فعال با استفاده از کنترل مود لغزشی. مجله علمی پژوهشی مکانیک سازهها و شارهها 78-65 :(1)7. 7
[18] Ren H, Chen S, Shim T, Wu, Z (2014) Effective assessment of tyre-road friction coefficient using a hybrid estimator. Vehicle Syst Dyn 52(8): 1047-1065.
[19] مشهدی ب، مجیدی م (1387) طراحی کنترلر فازی یکپارچه سیستمهای فرمان فعال و کنترل پایداری خودرو. دومین کنگره مشترک سیستمهای فازی و هوشمند ایران، تهران، دانشگاه صنعتی مالک اشتر.