[1] Hulsen MA (1990) A sufficient condition for a positive definite configuration tensor in differential models. J Non-Newton Fluid 38(1): 93-100.
[2] Kwon Y, Leonov AI (1995) Stability constraints in the formulation of vis coelastic constitutive equations. J Non-Newton Fluid 58(1): 25-46.
[3] Dupret F, Marchal JM () Loss of evolution in the flow of viscoelastic fluids. J Non-Newton Fluid 20(C): 143-171.
[4] Owens RG, Phillips TN (2002) Computational rheology. Imperial College Press, London.
[5] Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Non-Newton Fluid 123: 281-285.
[6] Fattal R, Kupferman R (2005) Time- dependent simulation of viscoelastic flow at high Weiss-enberg number using the log- conformation representation. J Non-Newton Fluid 126: 23-37.
[7] Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluid past a cylinder at high Weissenberg number: stabilized simulation using matrixlogarithms. J Comput Phys 127: 27-39.
[8] Kwon Y (2004) Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations. Korea-Aust Rheol J 4: 183-191.
[9] Leonov AI (1995) Viscoelastic constitutive equations and Rheology for high speed polymer processing. Polym Int 36: 187-193.
[10] Vaithianathan T, Robert A, Brasseur JG, Collins LR (2006) An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J Non-Newton Fluid 140(1-3): 3-22.
[11] Coronado OM, Arora D, Behr M, Pasquali M (2007) A simple method for simulating general viscoelastic fluid flow with an alternate log conformation formulation. J Non-Newton Fluid 147: 189-199.
[12] Jafari A, Fiétier N, Deville MO (2010) A new extended matrix logarithm formulation for the simulation of viscoelastic fluids by spectral elements. Comput Fluids 39(9): 1425-1438.
[13] Tome M, Castelo A, Afonso A, Alves M, Pinho F (2012) Application of the log-conformation tensor to three-dimensional time-dependent free surface flows. J Non-Newton Fluid 175176: 44-54.
[14] Saramito P (2014) On a modified non-singular log-conformation formulation for Johnson- segalman viscoelastic fluids. J Non-Newton Fluid 211: 16-30.
[15] Comminal R, Spangenberg J, Hattel JH (2015) Robust simulations of viscoelastic flows at high weissenberg numbers with the stream function/log-conformation formulation. J Non-Newton Fluid 223: 37-61.
[16] پارسایی م، دهقان س، جعفری آ، ایزدپناه ا (2018) حل عددی جریان چندلایه هسته-حلقه دو سیال با لزجتهای متفاوت به روش المان طیفی. مجله مکانیک سازهها و شارهها 260-249 :(4)8.
[17] Jafari A, Chitsaz A, Nouri R, Timothy NP (2018) Property preserving reformulation of constitutive laws for the conformation tensor. Theor Comp Fluid Dyn 32(6): 789-803.
[18] Cai W, Gottlieb D, Harten A (1990) Cell averaging Chebyshev methods for hyperbolic problems. Report No. 90-72, ICASE.
[19] McDonald BE (1989) Flux-corrected pseudo spectral method for scalar hyperbolic conservation laws. J Comput Phys 82(2): 413-428
[20] SJ Sherwin (1995) Triangular and tetrahedral spectral/hp element methods for fluid dynamics. PhD thesis, Princeton University.
[21] Bolis A (2013) fourier spectral/hp element method: Investigation of time-stepping and parallelisation strategies. PhD Thesis, Imperial College London.
[22] Karniadakis GE, Sherwin SJ (1999) Spectral/hp element methods for CFD, numerical mathematics and scientific computation. Oxford University Press, New York.
[23] Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice Hall PTR.
[24] Cruz DOA, Pinho FT, Oliveira PJ (2005) Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution. J Non-Newton Fluid 132(1-3): 28-35.