[1] Vernotte P (1958) Les paradoxes de la théorie continue de léquation de la chaleur. C R Acad Sci 246(22): 3154-3155.
[2] Cattaneo C (1958) A form of heat conduction equation which eliminates theparadox of instantaneous propagation. C R Acad Sci 247(4) :431-433.
[3] Ozisik MN,Tzou DY (1994) On the wave theory inheat conduction. J Heat Transf 116(3): 526-535.
[4] Lewandowska M, Malinowski L (2006) An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides. Int Commun Heat Mass 33(1): 61-69.
[5] Moosaie A (2007) Non-Fourier heat conduction in a finite medium with arbitrary source term and initial conditions. Forschung Ingenieurwesen 71(3-4): 163-169.
[6] Moosaie A (2008) Non-Fourier heat conduction in a finite medium with insulated boundariesand arbitrary initial conditions. Int Commun Heat Mass 35(1): 103-111.
[7] Tang D, Araki N (1996) Non-fourier heat conduction in a finite medium under periodic surface thermal disturbance. Int J Heat Mass Trans 39(8): 1585-1590.
[8] Zhang D, Li L, Li Z, Guan L, Tan X (2005) Non-fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting. Physica B 364(1-4): 285-293.
[9] Jiang F (2006) Solution and analysis of hyperbolic heat propagation in hollow spherical objects. Heat Mass Trans 42(12): 1083-1091.
[10] Daneshjou K, Bakhtiari M, Parsania H, Fakoor M, (2016) Non-Fourier heat conduction analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heatsource. Appl Therm Eng 98(1): 582-590.
[11] Abdel-Hamid B (1999) Modeling non-fourier heat conduction with periodic thermal oscillation using the infinite integral transform. Appl Math Modelg 23(12): 899-914.
[12] Zhou J, Zhang Y, Chen JK (2008) Non-fourier heat conduction effect on laser-induced thermal damage in biological tissues. Numer Heat Tr A-Appl 54(1): 1-19.
[13] Moosaie A (2009) Axisymetric non-fourier temperature field in a hollow sphere. Arch Appl Mech 79(8): 679-694.
[14] Ahmadikia H, Rismanian M (2011) Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions. J Mech Sci Technol 25(11): 2919-2926.
[15] Bamdad K, Azimi A, Ahmadikia H (2012) Thermal performance analysis of arbitrary-profile fins with non-fourier heat conduction behavior. J Eng Math 76(1): 181-193.
[16] Sadd NH, Cha CY (1982) Axisymmetric non-Fourier temperatures in cylindrically bounded domains. Int J Nonlin Mech 17(3): 129-136.
[17] Lam TT, Fong E (2011) Application of solution structure theorem to non-fourier heat conduction problems: Analytical approach. Int J Heat Mass Trans 54(23): 4796-4806.
[18] Torabi M, Saedodin S (2011) Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates. J Thermophys Heat Tr 25(2): 239-253.
[19] Mushref MA (2010) Fourier-Bessel expansions with arbitrary radial boundaries. Appl Math 1:18-23.
[20] Strikwerda JC (2004) Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics. 2nd edn. Vol. 88, Philadelphia.
[21] Kayhani MH, Norouzi M, Amiri Delouei A (2012) A general analytical solution for heat conduction in cylindrical multilayer composite laminates. Int J Therm Sci 52(1): 73-82.
[22] Kayhani MH, Shariati M, Nourozi M, Demneh, MK (2009) Exact solution of conductive heat transfer in cylindrical composite laminate. Heat Mass Transfer 46(1): 83-94.