Improve the Crashworthiness Properties of AA7075 Tube under Axial Impact Loading by Geometrical Change

Authors

1 Ph.D. Student, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran.

2 Associate Professor, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

Thin-walled sections absorb impact energy very efficiently that were considered in the studies in different shapes such as square profiles and cylindrical tubes by various methods as axial collapse or oblique loading. These structures are used in a variety of industries, such as aerospace, railways and road transport, especially to reduce road accident injuries in vehicles. To improve the crashworthiness properties of the structures, the peak load of the absorbers that ultimately shocks the occupant is also of importance. In this study, the cylindrical tubes of ultra-light aluminum alloys AA7075 that have a high-energy absorbing property were used for empirical tests. By considering the relationships of plastic hinge formation in thin-walled sections, a new geometry has been proposed that combined the axial and oblique loadings, then the peak load was controlled completely. By changing the end-cap of the tubes to the nozzled shape, after conducting empirical tests and validation of the finite element simulation results, according to analytical relation, the effect of this change was 30% reduction of initial peak load. Also, the effect of the geometry parameters has been studied. In this regard, to control the initial peak load, acceptable results are obtained. By changing the arc height by double and half, the peak load increased by 15% and decreased by 20%, respectively.

Keywords

Main Subjects


[1] Hamouda AMS, Saied RO, Shuaeib, FM (2007) Energy absorption capacities of square tubular structures. J Achiev Mater Manuf Eng 24(1): 36-42.
[2] Makinejad MD (2007) Development of fiber-reinforced epoxy composite energy absorber for automotive bumper system. Doctoral dissertation, Universiti Putra Malaysia.
[3] آذرخش س، رهی ع، قمریان ع (1395) بررسی آزمایشگاهی و عددی رفتار لهیدگی پوسته های استوانه­های برنجی. مجله مکانیک سازه­ها و شاره­ها 196-181 :(2)6.
[4] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه   عملکرد جذب انرژی سازه های چند جداره مربعی و دایروی با استفاده از روش کپراس و بهینه سازی سازه دایروی با    استفاده از روش سطح پاسخ. مجله مکانیک سازه­ها و شاره­ها      147-133 :(3)7.
[5] Ghamarian A, Zarei HR, Abadi MT (2011) Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes. Thin Wall Struct 49(10): 1312-1319.
[6] Song J, Chen Y, Lu G (2013) Light-weight thin-walled structures with patterned windows under axial crushing. Int J Mech Sci 66: 239-248.
[7] Mahdavi S, Mahmoodi A, Pasandidehpoor M, Marzbanrad J (2017) Experimental and numerical investigation on cutting deformation energy absorption in circular tubes under axial impact loading by damage criterions. Thin Wall Struct 120: 269-281.
[8] Marzbanrad J, Mashadi B, Afkar A, Mahdavi S (2016) A Comparison between cutting and folding modes of an extruded aluminum alloy tube during impact using ductile failure criterion. Mech Ind 17(2): 208-216.
[9] Reyes A, Langseth M, Hopperstad OS (2002) Crashworthiness of aluminum extrusions subjected to oblique loading: Experiments and numerical analyses. Int J Mech Sci 44(9): 1965-1984.
[10] Reyes A, Hopperstad OS, Langseth M (2004) Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study. Int J Solids Struct 41(5-6): 1645-1675.
[11] Ahmad Z, Thambiratnam DP, Tan ACC (2010) Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading. Int J Impact Eng 37(5): 475-488.
[12] Nouri MD, Hatami H (2014) Experimental and numerical study of the effect of longitudinal reinforcements on cylindrical and conical absorbers under impact loading. Indian J Sci Technol 7(2): 199-210.
[13] Nouri MD, Hatami H, Jahromi AG (2015) Experimental and numerical investigation of expanded metal tube absorber under axial impact loading. Struct Eng Mech 54(6): 1245-1266.
[14] Nagel GM, Thambiratnam DP (2005) Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin Wall Struct 43(8): 1225-1242.
[15] Andrews KRF, England GL, Ghani E (1983) Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci 25(9-10): 687-696.
[16] Gupta NK (2004) Experimental and numerical Studies of the collapse of thin tubes under axial compression. Lat Am J Solids Stru 1(2): 233-260.
[17] Gupta NK (2007) Experimental and numerical studies of impact axial compression of thin-walled conical shells. Int J Impact Eng 34(4): 708-720.
[18] Marzbanrad J, Mehdikhanlo M, Pour AS (2010) An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading. Turkish J Eng Env Sci 33(3): 159-166.
[19] AlaviNia AA, Nejad KF, Badnava H, Farhoudi HR (2012) Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading. Thin Wall Struct 59: 87-96.
[20] علوی­نیا ع، فرشاد ع (1393) بررسی تجربی و عددی تاثیر هندسه مقطع و فوم فلزی بر روی تغییرشکل و ویژگی­های جذب انرژی لوله های جدارنازک. مجله مکانیک سازه­ها و شاره­ها 63-51 :(1)4.
[21] Karagiozova D, Alves M (2004) Transition from progressive buckling to global bending of circular shells under axial impact––Part I: Experimental and numerical observations. Int J Solids Struct 41(5-6): 1565-1580.
[22] Karagiozova D, Alves M (2004) Transition from progressive buckling to global bending of circular shells under axial impact––Part II: Theoretical analysis. Int J Solids Struct 41(5-6): 1581-1604.
[23] Rusinek A, Zaera R, Forquin P, Klepaczko JR (2008) Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box. Thin Wall Struct 46(10): 1143-1163.
[24] Hatami H, Rad MS, Jahromi AG (2017) A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads. Int J Impact Eng 109: 224-239.
[25] Hatami HA, Nouri MD (2015) Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities. Lat Am J Solids Stru 12(10): 1950-1971.
[26] Jahromi AG, Hatami H (2017) Energy absorption performance on multilayer expanded metal tubes under axial impact. Thin Wall Struct 116: 1-11.
[27] Otubushin A (1998) Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube. Int J Impact Eng 21(5): 349-368.
[28] Al Galib D, Limam A (2004) Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin Wall Struct 42(8): 1103-1137.
[29] Abramowicz W, Jones N (1986) Dynamic progressive buckling of circular and square tubes. Int J Impact Eng 4(4): 243-270.
[30] Su XY, Yu TX, Reid SR (1995) Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity. Int J Impact Eng 16(4): 651-672.
[31] Jacob GC, Fellers JF, Starbuck JM, Simunovic S (2004) Crashworthiness of automotive composite material systems. J Appl Polym Sci 92(5): 3218-3225.
[32] European New Car Assessment Programme (EuroNCAP) (2004) Frontal Impact Testing Protocol, Version 4.1.
[33] European New Car Assessment Programme (EuroNCAP) (2004) Pedestrian Testing Protocol, Version 4.1.
[34] Jarén C, Alfaro JR, Arazuri S, de León JP, Arana JI (2009) Assessing rollover safety provided by ROPS tests following SAE standard J1194 versus OECD code 4. T ASABE 52(5): 1453-1460.
[35] Yamada H, Tsurudome M, Miura N, Horikawa K, Ogasawara N (2015) Ductility loss of 7075 aluminum alloys affected by interaction of hydrogen, fatigue deformation, and strain rate. Mat Sci Eng A-Struct 642: 194-203.
[36] Kathiresan M, Manisekar K (2016) Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading. Compos Struct 136: 86-100.
[37] Reddy TY, Wall RJ (1988) Axial compression of foam-filled thin-walled circular tubes. Int J Impact Eng 7(2): 151-166.
[38] Yamazaki K, Han J (2000) Maximization of the crushing energy absorption of cylindrical shells. Adv Eng Softw 31(6): 425-434.
[39] Jorgensen KC, Swan V (2014) Modeling of armour-piercing projectile perforation of thick aluminium plates. In 13th Intern. LS-DYNA Users Conf (Vol. 8).
[40] LS-DYNA, Keyword user's manual V971 (2014) VOLUME II Material Models, CA. Livemore software technology corporation.
[41] Jones N (2011) Structural impact. Cambridge university press.
[42] Alexander JM (1960) An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q J Mech Appl Math 13(1): 10-15.
[43] Alghamdi AAA (2001) Collapsible impact energy absorbers: An overview. Thin Wall Struct 39(2): 189-213.
[44] Lu G, Yu TX (2003) Energy absorption of structures and materials. Elsevier, England: Woodhead Publishing ltd and CRC Press LLC.
[45] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه عملکرد جذب انرژی سازه های چند جداره مربعی و دایروی با استفاده از روش کپراس و بهینه سازی سازه دایروی با    استفاده از روش سطح پاسخ. مجله مکانیک سازه­ها و شاره­ها     147-133 :(3)7.