[1] Hamouda AMS, Saied RO, Shuaeib, FM (2007) Energy absorption capacities of square tubular structures. J Achiev Mater Manuf Eng 24(1): 36-42.
[2] Makinejad MD (2007) Development of fiber-reinforced epoxy composite energy absorber for automotive bumper system. Doctoral dissertation, Universiti Putra Malaysia.
[3] آذرخش س، رهی ع، قمریان ع (1395) بررسی آزمایشگاهی و عددی رفتار لهیدگی پوسته های استوانههای برنجی. مجله مکانیک سازهها و شارهها 196-181 :(2)6.
[4] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه عملکرد جذب انرژی سازه های چند جداره مربعی و دایروی با استفاده از روش کپراس و بهینه سازی سازه دایروی با استفاده از روش سطح پاسخ. مجله مکانیک سازهها و شارهها 147-133 :(3)7.
[5] Ghamarian A, Zarei HR, Abadi MT (2011) Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes. Thin Wall Struct 49(10): 1312-1319.
[6] Song J, Chen Y, Lu G (2013) Light-weight thin-walled structures with patterned windows under axial crushing. Int J Mech Sci 66: 239-248.
[7] Mahdavi S, Mahmoodi A, Pasandidehpoor M, Marzbanrad J (2017) Experimental and numerical investigation on cutting deformation energy absorption in circular tubes under axial impact loading by damage criterions. Thin Wall Struct 120: 269-281.
[8] Marzbanrad J, Mashadi B, Afkar A, Mahdavi S (2016) A Comparison between cutting and folding modes of an extruded aluminum alloy tube during impact using ductile failure criterion. Mech Ind 17(2): 208-216.
[9] Reyes A, Langseth M, Hopperstad OS (2002) Crashworthiness of aluminum extrusions subjected to oblique loading: Experiments and numerical analyses. Int J Mech Sci 44(9): 1965-1984.
[10] Reyes A, Hopperstad OS, Langseth M (2004) Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study. Int J Solids Struct 41(5-6): 1645-1675.
[11] Ahmad Z, Thambiratnam DP, Tan ACC (2010) Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading. Int J Impact Eng 37(5): 475-488.
[12] Nouri MD, Hatami H (2014) Experimental and numerical study of the effect of longitudinal reinforcements on cylindrical and conical absorbers under impact loading. Indian J Sci Technol 7(2): 199-210.
[13] Nouri MD, Hatami H, Jahromi AG (2015) Experimental and numerical investigation of expanded metal tube absorber under axial impact loading. Struct Eng Mech 54(6): 1245-1266.
[14] Nagel GM, Thambiratnam DP (2005) Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin Wall Struct 43(8): 1225-1242.
[15] Andrews KRF, England GL, Ghani E (1983) Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci 25(9-10): 687-696.
[16] Gupta NK (2004) Experimental and numerical Studies of the collapse of thin tubes under axial compression. Lat Am J Solids Stru 1(2): 233-260.
[17] Gupta NK (2007) Experimental and numerical studies of impact axial compression of thin-walled conical shells. Int J Impact Eng 34(4): 708-720.
[18] Marzbanrad J, Mehdikhanlo M, Pour AS (2010) An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading. Turkish J Eng Env Sci 33(3): 159-166.
[19] AlaviNia AA, Nejad KF, Badnava H, Farhoudi HR (2012) Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading. Thin Wall Struct 59: 87-96.
[20] علوینیا ع، فرشاد ع (1393) بررسی تجربی و عددی تاثیر هندسه مقطع و فوم فلزی بر روی تغییرشکل و ویژگیهای جذب انرژی لوله های جدارنازک. مجله مکانیک سازهها و شارهها 63-51 :(1)4.
[21] Karagiozova D, Alves M (2004) Transition from progressive buckling to global bending of circular shells under axial impact––Part I: Experimental and numerical observations. Int J Solids Struct 41(5-6): 1565-1580.
[22] Karagiozova D, Alves M (2004) Transition from progressive buckling to global bending of circular shells under axial impact––Part II: Theoretical analysis. Int J Solids Struct 41(5-6): 1581-1604.
[23] Rusinek A, Zaera R, Forquin P, Klepaczko JR (2008) Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box. Thin Wall Struct 46(10): 1143-1163.
[24] Hatami H, Rad MS, Jahromi AG (2017) A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads. Int J Impact Eng 109: 224-239.
[25] Hatami HA, Nouri MD (2015) Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities. Lat Am J Solids Stru 12(10): 1950-1971.
[26] Jahromi AG, Hatami H (2017) Energy absorption performance on multilayer expanded metal tubes under axial impact. Thin Wall Struct 116: 1-11.
[27] Otubushin A (1998) Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube. Int J Impact Eng 21(5): 349-368.
[28] Al Galib D, Limam A (2004) Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin Wall Struct 42(8): 1103-1137.
[29] Abramowicz W, Jones N (1986) Dynamic progressive buckling of circular and square tubes. Int J Impact Eng 4(4): 243-270.
[30] Su XY, Yu TX, Reid SR (1995) Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity. Int J Impact Eng 16(4): 651-672.
[31] Jacob GC, Fellers JF, Starbuck JM, Simunovic S (2004) Crashworthiness of automotive composite material systems. J Appl Polym Sci 92(5): 3218-3225.
[32] European New Car Assessment Programme (EuroNCAP) (2004) Frontal Impact Testing Protocol, Version 4.1.
[33] European New Car Assessment Programme (EuroNCAP) (2004) Pedestrian Testing Protocol, Version 4.1.
[34] Jarén C, Alfaro JR, Arazuri S, de León JP, Arana JI (2009) Assessing rollover safety provided by ROPS tests following SAE standard J1194 versus OECD code 4. T ASABE 52(5): 1453-1460.
[35] Yamada H, Tsurudome M, Miura N, Horikawa K, Ogasawara N (2015) Ductility loss of 7075 aluminum alloys affected by interaction of hydrogen, fatigue deformation, and strain rate. Mat Sci Eng A-Struct 642: 194-203.
[36] Kathiresan M, Manisekar K (2016) Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading. Compos Struct 136: 86-100.
[37] Reddy TY, Wall RJ (1988) Axial compression of foam-filled thin-walled circular tubes. Int J Impact Eng 7(2): 151-166.
[38] Yamazaki K, Han J (2000) Maximization of the crushing energy absorption of cylindrical shells. Adv Eng Softw 31(6): 425-434.
[39] Jorgensen KC, Swan V (2014) Modeling of armour-piercing projectile perforation of thick aluminium plates. In 13th Intern. LS-DYNA Users Conf (Vol. 8).
[40] LS-DYNA, Keyword user's manual V971 (2014) VOLUME II Material Models, CA. Livemore software technology corporation.
[41] Jones N (2011) Structural impact. Cambridge university press.
[42] Alexander JM (1960) An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q J Mech Appl Math 13(1): 10-15.
[43] Alghamdi AAA (2001) Collapsible impact energy absorbers: An overview. Thin Wall Struct 39(2): 189-213.
[44] Lu G, Yu TX (2003) Energy absorption of structures and materials. Elsevier, England: Woodhead Publishing ltd and CRC Press LLC.
[45] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه عملکرد جذب انرژی سازه های چند جداره مربعی و دایروی با استفاده از روش کپراس و بهینه سازی سازه دایروی با استفاده از روش سطح پاسخ. مجله مکانیک سازهها و شارهها 147-133 :(3)7.