Experimental and Numerical Study of Deformation of FML Plates with the Same Thickness Under Explosive Loading

Authors

1 Msc student, Department of Mechanical Engineering, Imam Hossein University

2 Department of Mechanical Engineering Imam Hossein University

3 Prof., Department of Mechanical Engineering, Imam Hossein University

4 PhD student., Department of Mechanical Engineering, Guilan University

Abstract

Research in field of explosions effects on hybrid and composite structures is expanding. One of the loads that defense structures needs to withstand and not lose their performance is the explosion wave. In this thesis, using hand layup glass / epoxy composite plate, fiber-metal laminates optimized for the best resistance to explosive load were made. Then, mechanical properties were obtained using standard tensile tests for composites. The explosion test was carried out using a Shock tube machine. Finally, the results of the empirical test were compared with the numerical simulation of these plates by the finite element software. It was found that experimental and numerical results are in good agreement. At the end, the results of the experimental test and finite element simulation were compared and it was observed that a good match between the results was observed. The results of the experiments have shown that these plates do not even in loading less than 10 grams of C4 (equivalent to a pressure of 28 MPa) inside the shuck tube, and they are delaminated and in Loading 20 grams ruptured. In all experiments, it can be seen that the back aluminum plate, due to the reflection of the compressive wave that converts to the tensile wave, is removed from the panel and deforms the plastic And makes the composite less damaged.

Keywords

Main Subjects


[1] Ghasemi AR, Hajmohammad MH, Aminoroaya M (2015) Using response surface method and genetic algorithm for optimization of fiber metal laminate stacking sequences subjected to explosion loading. J Energ Mater.
[2] Nurick G, Martin J (1989) Deformation of thin plates subjected to impulsive loading—a review part II: Experimental studies. Int J Impact Eng 8(2): 171-186.
[3] Rajendran R, Lee J (2009) Blast loaded plates. Mar Struct 22(2): 99-127.
[4] Langdon G, Cantwell W, Nurick G (2004) The blast performance of novel fibre-metal laminates. WIT Trans Built Env 73.
[5] Balden V, Nurick G (2005) Numerical simulation of the post-failure motion of steel plates subjected to blast loading. Int J Impact Eng 32(1-4): 14-34.
[6] Langdon G, Nurick G, Lemanski S, Simmons M, Cantwell W, Schleyer G (2007) Failure characterisation of blast-loaded fibre–metal laminate panels based on aluminium and glass–fibre reinforced polypropylene. Compos Sci Technol 67(7): 1385-1405.
[7] Langdon G, Lemanski S, Nurick G, Simmons M, Cantwell W, Schleyer G (2007) Behaviour of fibre–metal laminates subjected to localised blast loading: Part I—Experimental observations. Int J Impact Eng 34(7): 1202-1222.
[8] Lemanski S, Nurick G, Langdon G, Simmons M, Cantwell W, Schleyer G (2007) Behaviour of fibre metal laminates subjected to localised blast loading—Part II: Quantitative analysis. Int J Impact Eng 34(7): 1223-1245.
[9] Langdon G, Rowe L (2009) The response of steel-based fibre-metal laminates to localised blast loading. in Proceedings of 17th international conference on composite materials, Edinburgh 27-31.
[10] Gharababaei H, Darvizeh A, Darvizeh M (2010) Analytical and experimental studies for deformation of circular plates subjected to blast loading. J Mech Sci Technol 24(9): 1855-1864.
[11] Zamani J, Shariati H, Gamsari A, Sheykhi A (2011) Effect of strain rate on the circular plate under dynamic loading by introducing a dynamic rather than static failure. J Energ Mater 10(2).
[12] Zamani J, Safari K, Khalili (2006) A theoretical and empirical analysis of the plastic square plates under explosive loading uniformly. presented at the Annual International Conference on Mechanical Engineering.
[13] Alderliesten R, Rans C, Benedictus R (2008) The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Compos Sci Technol 68(14): 2983-2993.
[14] Nguyen T, Tran M (2011) Response of vertical wall structures under blast loading by dynamic analysis. Procedia Engineer 14: 3308-3316.
[15] Sabouri H, Ahmadi H, Liaghata GH (2011) Ballistic impact perforation into GLARE targets: Experiment, numerical modelling and investigation of aluminium stacking sequence. IJVSS 3(3).
[16] Kumar P, Shukla A (2011) Dynamic response of glass panels subjected to shock loading. J Non-Cryst Solids 357(24): 3917-3923.
[17] Sadighi M, Alderliesten R, Benedictus R (2012) Impact resistance of fiber-metal laminates: A review. Int J Impact Eng 49: 77-90.
[18] Ahmadi H, Liaghat G, Sabouri H, Bidkhouri E (2013) Investigation on the high velocity impact properties of glass-reinforced fiber metal laminates. J Compos Mater 47(13): 1605-1615.
[19] Langdon GS, von Klemperer C, Volschenk G, van Tonder T, Govender R (2018) The influence of interfacial bonding on the response of lightweight aluminium and glass fibre metal laminate panels subjected to air-blast loading. P I Mech Eng C-J Mec 232(8): 1402-1417.
[20] خدارحمی ح (1394) مکانیک ضربه و انفجار. دانشگاه جامع امام حسین(ع) انتشارات 147.
[21] Moshksar M, Mansorzadeh S (2003) Determination of the forming limit diagram for Al 3105 sheet. J Mater Process Tech 141(1): 138-142.
[22] Deilami Azodi H, Darabi R (2017) Theoretical, Numerical and Experimental Investigation on Formability of Al3105-St14 Two-Layer Sheet. Journal of Solid Mechanics 9(2): 434-444.
[23] شکیب س م م (1392) مکانیک سازه‌های مرکب. دانشگاه جامع امام حسین (ع) انتشارات 380.
[24] Vo T, Guan Z, Cantwell W, Schleyer G (2012) Low-impulse blast behaviour of fibre-metal laminates. Compos Struct 94(3): 954-965.
[25] Forouzan MR, Hoseini R (2010) Dynamic Analysis of a Modified Truck Chassis. International Journal of Advanced Design and Manufacturing Technology 3(4): 31-36.
[26] Hoseini R, Salehipoor H (2012) Optimum design process of vibration absorber via imperialist competitive algorithm. Int J Struct Stab Dy 12(03): 1250019.
[27] Hosseini R, Firoozbakhsh K, Naseri H (2014) Optimal design of a vibration absorber for tremor control of arm in Parkinson's disease. JCARME 3(2): 85-94.
[28] Hosseini R, Hamedi M (2015) Study of the resonant frequency of unimorph triangular V-shaped piezoelectric cantilever energy harvester. International Journal of Advanced Design and Manufacturing Technology 8(4).
[29] Hosseini R, Hamedi M (2016) An investigation into resonant frequency of triangular V-shaped cantilever piezoelectric vibration energy harvester. Journal of Solid Mechanics 8(3): 560-567.
[30] Hosseini R, Hamedi M (2016) Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester. JCARME 6(1): 65-73.
[31] Hosseini R, Hamedi M, Ebrahimi Mamaghani A, Kim HC, Kim J, Dayou J (2017) Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. International Journal of Smart and Nano Materials 8(2-3): 110-124.
[32] Hosseini R, Hamedi M, Im J, Kim J, Dayou J (2017) Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int J Precis Eng Man 18(3): 415-424.
[33] Hosseini R, Nouri M (2016) Shape design optimization of unimorph piezoelectric cantilever energy harvester. Journal of Computational Applied Mechanics 47(2): 247-259.
[34] Hosseini R, Zargar O, Hamedi M (2018) Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers. Journal of Solid Mechanics 10(1): 98-109.
[35] Nejad RM, Marghmaleki IS, Hoseini R, Alaei P (2011) Effects of irreversible different parameters on performance of air standard Otto cycle. J Am Sci 7(3): 248-254.
[36] Salehipour H, Hosseini R, Firoozbakhsh K (2015) Exact 3-D solution for free bending vibration of thick FG plates and homogeneous plate coated by a single FG layer on elastic foundations Journal of Solid Mechanics 7(1):28-40.
[37] حسینی ر،  فاتحی ناراب هـ (1396) بررسی تجربی برداشت انرژی از راه رفتن انسان. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 181-173 :(4)7.
[38] حسینی ر، ابراهیمی ممقانی ع، نوری م (1396) بررسی تجربی اثر کاهش عرض تیر بر بازده برداشت کننده انرژی ارتعاشی پیزوپلیمری. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 51-41 :(3)7.
[39] حسینی ر، فاتحی ناراب هـ (1396) برداشت انرژی ارتعاشی با استفاده از تیر یک‌سردرگیر با دو لایه پیزوالکتریک. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 9-1 :(1)7.