Experimental Investigation of the Forced Convective Heat Transfer of hybrid Cu / Fe3O4 Nanofluids

Authors

1 School of Mechanical Engineering, Yazd University, Yazd, Iran.

2 Yazd

3 Energy and Sustainable Development Research Center, Semnan Branch, Islamic Azad University, Semnan, Iran.

Abstract

In this paper the forced convection of Cu and Fe3O4 and Cu/Fe3O4 hybrid nanofluid in the laminar regime under constant heat flux codition is investigated experimentally. Experiments are carried out in three volume fractions of 1, 2, 4 % and three Re number of 600, 1200 and 1800, and local Nusselt number is measured. The results show that for nanofluid in simple and hybrid mode, with increasing the volume fraction of nanoparticles and Re number, the heat transfer coefficient is increased. results revealed that the heat transfer rate is augmented for both cases of simple and hybrid nanofluids with a rise in the particle volume fractions or the Re number. In addition, the comparison of the experimental data of Cu, Fe3O4 and hybrid nanofluids indicated that the heat transfer enhancement is more remarkable in the case of hybrid nanofluid. In the case of Cu/Water nanofluid, the greatest increase in the heat transfer vs. pure Water is 7.8% and in the hybrid nanofluid 11.9%. Also, the volume fraction of hybrid nanofluids is very effective in increasing the coefficient of heat transfer, so that in a 2% volume state, an increase is observed over other simple nanofluid volumetric fraction.

Keywords

Main Subjects


[1] Zhang ZM (2007) Nano/microscale heat transfer. McGraw-Hill New York.
[2] Choi SUS, JA Eastman (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, IL (United States).
[3] Keblinski P, Phillpot R, Choi S, Eastman A (2002) Mechanisms of heat ¯ow in suspensions of nano-sized particles (nano¯uids). 45: 855-863.
[4] Jung JY, Yoo JY (2009) Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Transfer 52: 525-528.
[5] Krichler M, Odenbach S (2013) Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J Magn Magn Mater 326: 85-90.
[6] Xie HQ, Wang JC, Xi TG, Liu Y, Ai F (2002) Thermal conductivity enhancement of suspensions containing nanosized alumia particles. J Appl Phys 91(7): 4568-4572.
[7] Noie SH, Heris SZ, Kahani M, Nowee SM (2009) Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. Int J Heat Fluid Flow 30: 700-705.
[8] Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y (2009) Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys 9: e119-e123.
[9] Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Tran 52: 193-199.
[10] Aghabozorg MH, Rashidi A, Mohammadi S (2016) Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Therm Fluid Sci 72: 182-189.
[11] هوشمند ا، صداقت، سلیم پور م ر، زرگوشی ع، محسنی ع (1394) بررسی تجربی انتقال حرارت جریان نانوسیال آب/TiO2 در لوله افقی با نوار پیچه تحت شرایط دمای ثابت دیواره. مکانیک سازه‌ها و شاره‌ها 172-165 :(3)5.
[12] Akilu S, Sharma KV, Baheta AT, Mamat R (2016) A review of thermophysical properties of water based composite nanofluids. Renew Sust Energ Rev 66: 654-678.
[13] Ranga Babu JA, Kumar KK, Srinivasa Rao S (2017)  State-of-art review on hybrid nanofluids. Renew Sust Energ Rev 77: 551-565.
[14] Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nano fluids and hybrid nano fluids. J Mol Liq 240: 420-446.
[15] Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: Recent research, development and applications. Renew Sust Energ Rev 43: 164-177.
[16] Hemmat Esfe M, Saedodin S, Yan WM, Afrand M, Sina N (2016) Erratum to: Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim 125: 565.
[17] Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan WM, Karimipour A (2015) Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. Int Commun Heat Mass 66: 189-195.
[18] Hemmat Esfe M, Sarlak MR (2017) Experimental investigation of switchable behavior of CuO-MWCNT (85%–15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines. J Mol Liq 242: 326-335.
[19] Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H (2015) Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass 66: 100-104.
[20] Rashidia S, Bovand M, Esfahania JA (2016) Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq 215: 276-284.
[21] Ganguly R, Sen S, Puri IK (2004) Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater 271: 63-73.
[22] Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E 45: 408-416.
[23] Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ (2015) Numerical study of magnetic field effect on nano-fluid forced convection in a channel. J Magn Magn Mater 374: 11-17.
[24]  Chamkha A, Ismael M, Kasaeipoor A, Armaghani T (2016) Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy 18.
[25] Dibaei M, Kargarsharifabad H (2016) New achievements in Fe3O4 nanofluid fully developed forced convection heat transfer under the effect of a magnetic field: An experimental study. Int J Heat Mass Tran 4(1): 1-11.
[26] Kargarsharifabad H, Falsafi M (2015) Numerical study of ferrofluid forced convection heat transfer in tube with magnetic field. Journal of Computational Method in Engineeering 34(1): 11-25.
[27] Sundar LS, Naik MT, Sharma KV, Singh MK, Siva Reddy TC (2012) Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Therm Fluid Sci 37: 65-71.
[28] Ho CJ, Chen MW, Li ZW (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Tran 51: 4506-4516.
[29] زندیان ع، خورشیدی مال احمدی ج (1392) انتقال حرارت جابجایی اجباری و رفتار هیدرودینامیکی نانوسیال آب/CuO در فضای بین استوانه های هم محور چرخان. مکانیک سازه­ها و شاره­ها 136-121 :(3)3.
[30] Sundar LS, Singh MK, Sousa ACM (2014) Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int Commun Heat Mass 52: 73-83.
[31] Bejan A, Kraus AD (2003) Heat transfer handbook. John Wiley & Sons.
[32] Eckert ERG, Goldstein RJ (1976) Measurements in heat transfer. Taylor & Francis.
[33] Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. MECH ENG 75: 3-8.