Numerical study of the effects of aluminum particle additives in adsorbent bed on the performance of adsorption refrigeration systems

Authors

1 M.Sc., Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Prof., Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

In this study, the effects of aluminum particle additives in porous beds on the adsorption chillers performance have been investigated. For this purpose, an adsorbent bed with rectangular finned flat-tube heat exchanger by employing a three-dimensional control volume scheme is simulated. Furthermore, silica gel SWS-1L-water has been used as a working pair. The effects of aluminum particle additives on the system performance is investigated in the presence and absence of the fins. The results showed that the use of aluminum particles increases the thermal conductivity coefficient of the bed and, consequently, leads to reduction and increment of the cycle time and the specific cooling power, respectively, while it decreases the coefficient of performance. Moreover, the results indicated that employing the aluminum particles in the presence of fins has led to a greater increase in the specific cooling power which this effect is more pronounced in larger bed dimensions, while the coefficient of performance reduction is lower in the absence of fins.

Keywords

Main Subjects


[1] Demir H, Mobedi M, Ülkü S (2008) A review on adsorption heat pump: Problems and solutions. Renew Sust Energ Rev 12: 2381-2403.
[2] Aristov YI (2017) Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics. Renewable Energy 110: 105-114.
[3] Solmuş İ, Rees DAS, Yamalı C, Baker D (2012) A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair.  Int J Heat Mass Tran 55: 5275-5288.
[4] Solmuş İ, Yamalı C, Yıldırım C, Bilen K (2015) Transient behavior of a cylindrical adsorbent bed during the adsorption process. Appl Energ 142: 115-124.
[5] Niazmand H, Dabzadeh I (2012) Numerical simulation of heat and mass transfer in adsorbent beds with annular fins. Int J Refrig 35: 581-593.
[6] مهدوی خواه م، نیازمند ح (1391) مطالعه عددی میزان اهمیت مقاومت انتقال جرم برون‌ذره‌ای در مدل‌سازی محیط متخلخل بستر چیلرهای جذب سطحی. مجله مهندسی مکانیک مدرس 29-19 :(6)12.   
[7] Golparvar B, Niazmand H (2018) Adsorption cooling systems for heavy trucks A/C applications driven by exhaust and coolant waste heats. Appl Therm Eng 135:158-169.
[8] گل پرور ب، محمدزاده کوثری م، نیازمند ح (1395) بهینه‏ سازی بستر جاذب لوله با فین‌های طولی در سیستم تبرید جذب سطحی با بکارگیری حرارت اتلافی اگزوز. مجله مهندسی مکانیک مدرس 778-767 :(12)16.
[9] Verde M, Harby K, Corberán JM (2017) Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl Therm Eng 111: 489-502.
[10] Mohammadzadeh Kowsari M, Niazmand H, Tokarev MM (2017) Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation. Appl Energ 213:540-554.
[11] Solmuş İ, Yamalı C, Kaftanoğlu B, Baker D, Çağlar A (2010) Adsorption properties of a natural zeolite–water pair for use in adsorption cooling cycles. Appl Energ 87:2062-2067.
[12] Demir H, Mobedi M, Ülkü S (2009) Effects of porosity on heat and mass transfer in a granular adsorbent bed. Int Commun Heat Mass 36: 372-377.
[13] Niazmand H, Talebian H, Mahdavikhah M (2013) Effects of particle diameter on performance improvement of adsorption systems. Appl Therm Eng 59: 243-252.
[14] Waszkiewicz S, Tierney M, Scott HS (2009) Development of coated, annular fins for adsorption chillers. Appl Therm Eng 29: 2222-2227
[15] Demir H, Mobedi M, Ülkü S (2010) The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed. Int J Refrig 33:714-720.
[16] Rezk A, Al-Dadah R, Mahmoud S, Elsayed A (2013) Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl Therm Eng 53:278-284.
[17] Askalany AA, Henninger SK, Ghazy M, Saha BB (2017) Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system. Appl Therm Eng 110: 695-702.
[18] آذرفر م، نیازمند ح، طالبیان هـ (1393) شبیه سازی عددی تأثیر افزایش انتقال حرارت در بستر جاذب بر عملکرد سیستم جذب سطحی. مجله مهندسی مکانیک مدرس 112-103 :(8)14.
[19] Aristov YI (2012) Adsorptive transformation of heat: principles of construction of adsorbents database. Appl Therm Eng 42: 18-24.
[20] Sircar S, Hufton J (2000) Why does the linear driving force model for adsorption kinetics work?. Adsorption  6:137-147.
[21] Mahdavikhah M, Niazmand H (2013) Effects of plate finned heat exchanger parameters on the adsorption chiller performance. Appl Therm Eng 50: 939-949.
[22] Tokarev M, Okunev B, Safonov M, Kheifets L, Y. Aristov I (2005) Approximation equations for describing the sorption equilibrium between water vapor and a CaCl2-in-silica gel composite sorbent. Russ J Phys Ch 79:1490-1493.
[23] Nield DA, Bejan A (2012) Convection in Porous Media. Springer Science & Business Media.
[24] Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. 2nd. New York.
[25] محمدزاده کوثری م (1395) مدل‌سازی عددی و بررسی مشخصات ساختاری بستر جاذب با مبدل صفحه-تخت در چیلر جذب سطحی. پایان‌نامه کارشناسی ارشد، دانشکده مهندسی دانشگاه فردوسی مشهد.
[26] Rogala Z (2017) Adsorption chiller using flat-tube adsorbers–Performance assessment and optimization. Appl Therm Eng 121: 431-442.
[27] San JY, Hsu HC (2009) Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair. Appl Therm Eng 29: 1606-1613.
[28] Sapienza A, Frazzica A, Freni A, Aristov Y (2018) Adsorptive heat transformation and storage: Thermodynamic and kinetic aspects. In Dynamics of Adsorptive Systems for Heat Transformation 201: 1-18.
[29] Hamilton RL, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1:187-191.
[30] Maxwell JC (1881) A treatise on electricity and magnetism 1. Clarendon press.
[31] Bruggeman VD (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys-Berlin 416: 636-664.