Experimental and numerical study of core and face-sheet thickness effects in sandwich panels with foam core and aluminum face-sheets subjected to blast loading

Authors

1 Department of Mechanical Engineering Imam Hossein Comprehensive University

2 Department of Mechanical Engineering Imam Hossein University

3 Department of Mechanical Engineering Guilan University

Abstract

Sandwich panels, due to high strength to weight ratio and energy absorption properties, are widely used in various industries including aerospace industries, marine and automotive industries. This study explored the strength and performance of panels composed of low-density polyurethane foam core sandwiched between two aluminum skins. In this article several aluminum sandwich panels with polyurethane foam core having different thickness were designed and tested using a shock tube facility. Some blast test were performed in order to determine the effects of foam thickness on displacement of back face-sheet and energy absorption of sandwich structures. Also using the compression test results performed on the foam, numerical simulation using Autodyn software were performed. There was a good agreement between experimental investigation and numerical results. Using experimental investigation and parametric studies, it is shown that the amount of displacement of back face-sheet of sandwich structures is decreased and energy absorption is increased as foam and back face-sheet thickness is increased.

Keywords

Main Subjects


[1]  Hou W, Zhu F, Lu G, Fang DN (2010) Ballistic impact experiments of metallic sandwich panels with aluminium foam core. Int J Impact Eng 37(10): 1045-1055.
[2]  Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L (2000) Metal foams: a design guide. Elsevier.
[3]  Guruprasad S, Mukherjee A (2000) Layered sacrificial claddings under blast loading Part I—analytical studies. Int J Impact Eng 24(9): 957-973.
[4]  Guruprasad S, Mukherjee A (2000) Layered sacrificial claddings under blast loading Part II—experimental studies. Int J Impact Eng 24(9): 975-984.
[5]  Hanssen A, Enstock L, Langseth M (2002) Close-range blast loading of aluminium foam panels. Int J Impact Eng 27(6):  593-618.
[6]  Ma G, Ye Z (2007) Energy absorption of double-layer foam cladding for blast alleviation. Int J Impact Eng 34(2):  329-347.
[7]  Karagiozova D, Nurick G, Langdon G, Yuen SCK, Chi Y, Bartle S (2009) Response of flexible sandwich-type panels to blast loading. Compos Sci Technol 69(6): 754-763.
[8]  Shen J, Lu G, Wang Z, Zhao L (2010) Experiments on curved sandwich panels under blast loading. Int J Impact Eng 37(9): 960-970.
[9]  Theobald M, Langdon G, Nurick G, Pillay S, Heyns A, Merrett R (2010) Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading. Compos Struct 92(10): 2465-2475.
[10] Yazici M, Wright J, Bertin D, Shukla A (2014) Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Compos Struct 110: 98-109.
[11] Qi C, Remennikov A, Pei LZ, Yang S, Yu ZH, Ngo TD (2017) Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos Struct 180: 161-178.
[12] Doğru M, Güzelbey İ (2018) Investigation of the impact effects of thermoplastic polyurethane reinforced with multi-walled carbon nanotube for soldier boot under the blast load. J Thermoplast Compos 0892705717734599.
[13] Bahei-El-Din YA, Dvorak GJ (2007) Behavior of sandwich plates reinforced with polyurethane/polyurea interlayers under blast loads. J Sandw Struct Mater 9(3): 261-281.
[14] Raman SN, Somarathna HCC, Mutalib AA, Badri KH, Taha MR (2018) Bio-based polyurethane elastomer for strengthening application of concrete structures under dynamic loadings. International Congress on Polymers in Concrete 751-757.
[15] Imbalzano G, Linforth S, Ngo TD, Lee PVS, Tran P (2018) Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs. Compos Struct 183: 242-261.
[16] A. International, Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International, 2010.
[17] Dobratz B (1981) LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants. Lawrence Livermore National Lab, CA (USA).
[18] AUTODYN. Theory Manual. Century Dynamics (2006).
[19] Fish J, Oskay C, Fan R, Barsoum R (2005) Al 6061-T6-elastomer impact simulations. Electronic Document.
[20] Forouzan MR, Hoseini R (2010) Dynamic Analysis of a Modified Truck Chassis. International Journal of Advanced Design and Manufacturing Technology 3(4): 31-36.
[21] Hoseini R, Salehipoor H (2012) Optimum design process of vibration absorber via imperialist competitive algorithm. Int J Struct Stab Dy 12(03): 1250019.
[22] Hosseini R, Firoozbakhsh K, Naseri H (2014) Optimal design of a vibration absorber for tremor control of arm in Parkinson's disease. Journal of Computational and Applied Research in Mechanical Engineering (JCARME) 3(2): 85-94.
[23] Hosseini R, Hamedi M (2015) Study of the resonant frequency of unimorph triangular V-shaped piezoelectric cantilever energy harvester. International Journal of Advanced Design and Manufacturing Technology 8(4).
[24] Hosseini R, Hamedi M (2016) An investigation into resonant frequency of triangular V-shaped cantilever piezoelectric vibration energy harvester. Journal of Solid Mechanics 8(3): 560-567.
[25] Hosseini R, Hamedi M (2016) Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester. Journal of Computational and Applied Research in Mechanical Engineering (JCARME) 6(1): 65-73.
[26] Hosseini R, Hamedi M, Ebrahimi Mamaghani A, Kim HC, Kim J, Dayou J (2017) Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. International Journal of Smart and Nano Materials 8(2-3): 110-124.
[27] Hosseini R, Hamedi M, Im J, Kim J, Dayou J (2017) Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int J Pr Eng Man-Gt 18(3): 415-424.
[28] Hosseini R, Nouri M (2016) Shape design optimization of unimorph piezoelectric cantilever energy harvester. Journal of Computational Applied Mechanics 47(2): 247-259.
[29] Hosseini R, Zargar O, Hamedi M (2018) Improving power density of piezoelectric vibration-based energy scavengers. Journal of Solid Mechanics 10(1): 98-109.
[30] Nejad RM, Marghmaleki IS, Hoseini R, Alaei P (2011) Effects of irreversible different parameters on performance of air standard Otto cycle. J Am Sci 7(3): 248-254.
[31] Salehipour H, Hosseini R, Firoozbakhsh K (2015) Exact 3-D solution for free bending vibration of thick FG plates and homogeneous plate coated by a single FG layer on elastic foundations. Journal of Solid Mechanics 7(1):28-40.
[32] حسینی ر، فاتحی ناراب هـ (1396) بررسی تجربی برداشت انرژی از راه رفتن انسان. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 181-173 :(4)7.
[33] حسینی ر، ابراهیمی ممقانی ع، نوری م (1396) بررسی تجربی اثر کاهش عرض تیر بر بازده برداشت کننده انرژی ارتعاشی پیزوپلیمری. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 52-41 :(3)7.   
[34] حسینی ر، فاتحی ناراب هـ (1396) برداشت انرژی ارتعاشی با استفاده از تیر یک‌سردرگیر با دو لایه پیزوالکتریک. مجله علمی پژوهشی مکانیک سازه‌ها و شاره­ها 9-1 :(1)7.