Study of the effect of nano-fluid in the diesel-cooled diesel engine oil cooler

Authors

1 Young Researchers and Elite Club, Shahre Kord Branch, Islamic Azad University, Shahre Kord, Iran

2 Faculty of Mechanical Engineering, Payame Noor University

3 Faculty of Mechanical Engineering, Isfahan University of Technology

Abstract

In the present study, three different fluids with different volumes of nano materials(Al2O3) in the Reynolds range of 3 to 48 thousand were investigated for the purpose of evaluating the effect of using nanofluid in heat exchangers. The converter in the submarine engine come to use of as a motor oil cooler. The results show that the addition of nanoparticles to the base fluid in the lower reynolds results in a higher performance factor in the exchanger. By increasing the volumetric percentage of nanoparticles, the converter's performance factor decreases. Optimum mode and maximum heat exchanger performance, in all volumetric percentages, occurs in Reynolds 20,000 for water and 12,000 for ethylene glycol. In other words, the choice of base fluid with a higher performance factor depends on the Reynolds number range. Also, this study examined sea water as a cooling fluid available to the marine diesel engine.
Keywords: Nano fluid, Heat exchanger, Volume percentage, Reynolds number

Keywords


[1] سوادکوهی ل ا (1388) بررسی تأثیر تغییر رفتار سامانة خنک کاری موتور 457 LA برعملکرد آن.  فصلنامه علمی پژوهشی تحقیقات موتور 21-16 :16.
[2] Pinto JM, Gut JAW (2002) A screening method for the optimal selection of plate heat exchanger configurations. Brazilian J Chem Eng 19(4): 433-439.
[3]  Chol SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231: 99-106.
[4]  Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf An Int J 11(2): 151-170.
[5]  Eastman JA (1999) Novel thermal properties of nanostructured materials. Argonne National Lab, IL (US).
[6]  Heris SZ, Etemad SG, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33(4): 529-535.
[7] هوشمند ا، صداقت ا، سلیم‌پور م‌ر، زرگوشی ع، محسنی ع (1394) بررسی تجربی انتقال حرارت جریان نانوسیال آب/ اکسید تیتانیوم در لوله افقی با نوار پیچه تحت شرایط دمای ثابت دیواره. مجله علمی- پژوهشی مکانیک سازه‌ها و شاره‌ها 172-165 :(3)5.
[8]  Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1): 58-64.
[9]  Williams W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transfer 130(4): 42412.
[10] Bianco V, Manca O, Nardini S (2011) Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci 50(3): 341-349.
[11] Ruan B, Jacobi AM (2012) Heat transfer characteristics of multiwall carbon nanotube suspensions (MWCNT nanofluids) in intertube falling-film flow. Int J Heat Mass Transf 55(11): 3186-3195.
[12] Ghiaasiaan SM (2011) Convective heat and mass transfer. Cambridge University Press.
[13] Jones WP, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2): 301-   314.
[14] Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1(2): 131-137.
[15] Kim J, Kang YT, Choi CK (2004) Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids 16(7): 2395-2401.
[16] Raisi A (2017) Heat transfer in an enclosure filled with a nanofluid and containing a heat-generating conductive body. Appl Therm Eng 110: 469-480.
[17] Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52(1): 789-793.