Numerical simulation of wave-floating bodies interaction using a truly incompressible SPH method with artificial compressibility approach

Authors

1 Department of mechanical engineering, Engineering Faculty, Isalamic Azad University, Hamedan, Iran

2 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In the present study, the numerical simulation of free-surface flow and wave-floating bodies interaction is performed by a truly incompressible smoothed particle hydrodynamics based on the artificial compressibility method (ACISPH). The two-dimensional governing equations in the primitive variables formulation using Chorin's artificial compressibility method are written in the Lagrangian reference frame to provide an appropriate incompressible SPH algorithm for computing the incompressible flows. An implicit dual-time stepping scheme is used for the time integration to be capable of time accurate analysis of unsteady flows. Unlike the weakly compressible SPH (WCSPH) method, the ACISPH method does not involve any approximate enforcement of the incompressibility condition that usually implies time step restrictions and spurious oscillations in the flow field. Unlike the projection SPH algorithm, the ACISPH method does not involve an iterative solution of the pressure Poisson equation and the pressure field is efficiently computed locally through the solution of the governing equations. The accuracy of the ACISPH method is demonstrated by solving the incompressible flow in a 2-D Hydrostatics tank. Then, the wave-floating bodies interaction is simulated and the results obtained are compared with the available experimental and numerical results. The study shows that the artificial compressibility-based ISPH (ACISPH) method applied is accurate and robust for simulating the wave-floating bodies’ interaction.

Keywords

Main Subjects


[1] Ganaoui M, Alami S (2009) A lattice Boltzmann coupled to finite volumes method for solving phase change problems. Ther  Sci 13: 205-216.
[2] Fei K, Chen TS, Hong CW (2010) Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods. J  Pow Sour 195: 1940-1945.
[3] شایان ا، دادوند ع، میرزایی ا (1393) شبیه­سازی عددی جریان خارجی لزج تراکم­ناپذیر به روش لاتیس بولتزمان بدون‌شبکه. مجله علمی پژوهشی مکانیک سازه ها و شاره­ها 189-175 :4.
[4] Rahimi-Gorji M, Gorji TB, Gorji-Bandpy M (2016) Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Comp Bio Med 74: 1-17.
[5] Lucy B (1977) A numerical approach to the testing of the fission hypothesis. The Astr J 82:1013-1024.
[6] Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society 181(3): 375-389.
[7] Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11):879-890.
[8] Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2): 399-406.
[9] Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152: 584-607.
[10] Lee ES, Moulinec C, Xu R, D Violeau, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227 8417-8436.
[11] Xu R, Stansby P, Laurence D (2009)  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228: 6703-6725.
[12] Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non- Newtonian flows with a free surface. Adv Wat Res 26: 787-800.
[13] Rouzbahani F, Hejranfar K (2017) A truly incompressible smoothed particle hydrodynamics based on artificial compressibility method. Comp  Phys Comm 210(1): 10-28.
[14] Chorin AJ  (1997) A numerical method for solving incompressible viscous flow problems. J Comp Phys 135(2): 18-125.
[15] Jameson A (1991) Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. in Proceeding of AIAA Technical Paper: 91-1596.
[16] فاتحی ر، صفدری شادلو م، تقی زاده منظری م (1386) بررسی دقت انتگرال‌گیری در روش SPH. هفتمین همایش سالانه (بین‌المللی) انجمن هوافضای ایران، تهران.
[17] Fatehi R, Manzari MT (2012) A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition. Int J Num Meth Fluids 68(7): 905-921.
[18] Fatehi R, Manzari MT (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives.  Comp Math Apps 61: 482-498.
[19] فاتحی ر (1389)  شبیه‌سازی عددی جریان دو فاز در محیط متخلخل در مقیاس حفرات. رساله دکتری تخصصی مهندسی مکانیک، دانشگاه صنعتی شریف.
[20] Yovel Y, Franz M O, Stilz P, Schnitzler H U, (2008) Plant classification from bat-like echolocation signals. PL Comp Bio 4(3):10-32.
[21] Monaghan JJ, Kos A (1999) Solitary waves on a cretan beach. J Waterw Port Coast Ocean Eng 125(3): 145-154.
[22] Koshizuka S, Nobe A, Oka Y (1998) Numerical Analysis of Breaking Waves using the moving particle Semi-Implicit Method. Int J Numer Meth Fluids 26: 751-769.
[23] Edmond Y, Shao SD (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl  Oce  Res 24: 275-286.
[24] Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: Towards higher order convergence. J Comp Phys 225(2): 1472-1492.
[25] Gómez-Gesteira M, Roger BD, Crespo AJC, Dalrymple RA, Narayanaswamy M, Dominguez JM (2012) SPHysics - development of a free-surface fluid solver- Part 1: Theory and Formulations. Comput Geotech http://www.sphysics.org.
[26] Stallard T (2010) Tidal stream & wave energyclimate change and energy: A marine perspective marine symposium. Liverpool Jan.