A new model for two-phase flow in a solar still improved by a porous layer

Authors

1 Department of Mechanical Engineering, Khatmol Anbia Air Defense, Tehran, Iran

2 Department of Mechanical Engineering, K. N. Tossi University of Technology, Tehran, Iran

Abstract

In this research, the volume of fluid (VOF) model is used to simulate the vapor-liquid two-phase flow in a single slope solar still. This model has an ability to track the interface between liquid and vapor phases during the phase change. To benchmark the accuracy of VOF model, the numerical results are compared with the experimental data and the results of previous model for simulating solar still (moist air model). It was found that the volume of fluid model predicts the experimental data with more accuracy in comparison with the moist air model. After simulation, the effect of using a sponge layer as the cheap porous material on productivity of the solar still is investigated. Sponge layer provides more effective area for evaporation and solar radiation absorption inside the solar still. Moreover, this material has wick property and transfers the water to evaporation surface. The results showed that the productivity of the solar still enhances about 10% by using a sponge layer with porosity of 0.6. Moreover, it is observed that the productivity increases with decreasing the porosity of sponge layer for porosities higher than 0.6, while the productivity decreases with decreasing the porosity of sponge layer for porosities less than 0.6.

Keywords

Main Subjects


[1] Dwivedi VK, Tiwari GN (2010) Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination 250(1): 49-55.
[2] Kharabsheh SA , Goswami DY (2003) Analysis of an innovative water desalination system using low-grade solar heat. Desalination 156: 323-332.
[3] Nassar YF, Yousif SA, Salem AA (2007) The second generation of the solar desalination systems. Desalination 209: 177-181.
[4] Abu-Arabi M, Zurigat Y, Al-Hinai H , Al-Hiddabi S (2002) Modeling and performance analysis of a solar desalination unit with double-glass cover cooling. Desalination 143: 173-182.
[5] Velmurugan V, Deenadayalan CK, Vinod H (2008) Srithar K.( 2008) Desalination of effluent using fin type solarstill, Energy, 33: 1719-1727.
[6] Kabeel AE, Abdelgaied M (2016) Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination 383: 22-28.
[7] Kabeel AE (2009) Performance of solar still with a concave wick evaporation surface. Energy 34: 1504-1509.
[8] Nafey AS, Abdelkader M, Abdelmotalip A,  Mabrouk AA (2001) Solar still productivity enhancement.      Energy Convers Manage 42: 1401-1408.
[9] Srivastava PK, Agrawal SK (2013) Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers. Solar Energy 311: 198-205.
[10] El-Sebaii AA, Ramadan MRI, Aboul-Enein S, El-Naggar M (2015) Effect of fin configuration parameters on single basin solar still performance. Desalination 365: 15-24.
[11] Setoodeh N, Rahimi R, Ameri A (2011) Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination 268: 103-110.
[12] زحمتکش الف (1393)تولید آنتروپی نانوسیالات در همرفت طبیعی در محفظه های متخلخل مستطیل شکل. مجله علمی پژوهشی سازه‌ها و شاره‌ها 184-171 :(3)4.
[13] علوی ن، ارمغانی ط، ایزدپناه الف (1395) انتقال حرارت جابجایی آزاد نانوسیال در محفظه L شکل بافلدار. مجله علمی پژوهشی سازه‌ها و شاره‌ها 321-311 :(3)6.
[14] Rezvani A, Valipour MS, Biglari M (2016) Numerical study of entropy generation for natural convection in cylindrical cavities. J Heat Mass Transf Res (JHMTR) 3: 89-99.
[15] Rallabandi SR, Anitha G, Reddy J (2017) Heat and mass transfer effects on MHD natural convective flow past a vertical porous plate through analytical and numerical results.
[16] Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39: 201-225.
[17] Brackbill JU, Kothe DB , Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100: 335-354.
[18] Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York.           
[19] پورموید ع، رحمتی ر، برخورداری هـ (1396) آنالیز تولید آنتروپی موضعی برای یک آب­­شیرین‌کن خورشیدی شیب‌دار یک طرفه (بررسی عددی). مجله علمی پژوهشی سازه‌ها و شاره‌ها، پذیرفته شده.