An Experimental Investigation of Power Scavenging from Human Walking

Authors

Abstract

Energy harvesting or energy scavenging is the process of extracting energy of the surrounding environment, through various methods. No need to replace worn-out batteries and reducing maintenance costs and the use of medical devices within the body, are the important reasons for using energy harvesters. Piezoelectric materials are a class of smart materials that convert mechanical strain into electrical voltage and produce higher power density compared with other materials. Thus piezoelectric materials, are the main options in energy harvesting from vibration and mechanical movements. For energy harvesting and storage, shoe heels are suitable sources of mechanical stress, deformation and vibration during human walking. The purpose of this paper is to examine the possibility of using piezoelectric materials in footwear as a power source for charging the battery. The results of the tests, show that the use of piezo-ceramic converter for energy harvesting from the pressure of feet walking, can produce maximum power of 55mW. It will takes 19 hours to charge a rechargeable battery with a voltage of 2.1 volts and a current of 900 mA.

Keywords

Main Subjects


[1]  Boyle G (2004) Renewable energy. OXFORD university press.
[2]  Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons.
[3]  Priya S, Inman DJ (2009) Energy harvesting technologies. vol. 21, Springer.
[4]  Abdi H, Mohajer N, Nahavandi S (2014) Human passive motions and a user-friendly energy harvesting system. JIMSS 25:  923-936.
[5]  Starner T (1996) Human-powered wearable computing. IBM Sys J 35: 618-629.
[6]  Zhao J, You Z (2014) A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14: 12497-12510.
[7]  Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. in Wearable Computers, Second International Symposium on 132-139.
[8]  Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. SMS 16: 1810.
[9]  Yang B, Yun KS (2012) Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sens Actuators A Phys 188:  427-433.
[10] Hosseini R, Hamedi M (2015) An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsyst Technol 1-8.
[11] Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. JMM 25.
[12] Hosseini R, Hamedi M (2016) Study of the resonant frequency of unimorph triangular V-shaped piezoelectric cantilever energy harvester. ILADMT 8.
[13] Palmer JA, Dessent B, Mulling JF, Usher T, Grant E, Eischen JW (2004) The design and characterization of a novel piezoelectric transducer-based linear motor.               IEEE ASME Trans Mechatron 9: 392-398.
[14] Sodano HA, Park G, Inman D (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40: 49-58.
[15] Pereyma M (2007) Overview of the modern state of the vibration energy harvesting devices. in Perspective Technologies and Methods in MEMS Design, MEMSTECH, International Conference on 107-112.
[16] Taleghani BK, Campbell JF (1999) Nonlinear finite element modeling of THUNDER piezoelectric actuators. Symposium on Smart Structures and Materials 555-566.
[17] حسینی ر، لطافتی م ح، حسینی مقدم س س (1396) برداشت انرژی ارتعاشی با استفاده از تیر یکسردرگیر با دو لایه پیزوالکتریک. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 9-1 :(1)7.
[18] حسینی ر، حامدی م (1392) مهارکننده های انرژی مکانیکی. مجله علمی ترویجی مهندسی مکانیک ایران
30-25 :(92)20.