Finite element model updating using operational modal analysis and bees optimization algorithm

Authors

1 Phd candidate in mechanical engineering

2 professor of statistics in shahid chamran university

Abstract

In this study, application of operational modal analysis and bees algorithm (BA) in order finite element model updating are investigated. BA optimization algorithm applies instinctive behavior of honeybees for finding food sources. An objective function is defined as the sum of the squared errors between the obtained natural frequencies by operational modal analysis and finite element method. Experimental natural frequencies are determined by stochastic subspace identification (SSI) which is considered as one of the strong methods of operational modal analysis. In order to investigate the accuracy of the proposed method, BA and SSI methods are implemented on a three story structure to update parameters of its finite element model. Furthermore, to study of effectiveness of BA algorithm, the results of BA algorithm are compared with particle swarm optimization (PSO) and Nelder-Mead (NM) algorithms. The results show that the BA optimization algorithm, in comparison with the PSO and NM methods, is more accurate and faster to update finite element model.

Keywords

Main Subjects


[1] He J, Fu ZF (2001) Modal analysis. 1st edn. Oxford, London.
[2] Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. 28th International Modal Analysis Conference, San Antonio, TX, USA.
[3] Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operational trough operational modal analysis. Int J Mach Tools Manuf 49: 947-957.
[4] Ebrahimi R, Esfahanian M,  Ziaei-rad S (2013) Vibration modeling and modification of cutting platform in a harvest combine by means of operational modal analysis (OMA). J Meas 46: 3959-3967.
[5] Van Overschee P, De Moor B (1990) Subspace identification for linear system. Mech Syst Signal Process 5: 101-135.
[6] Noel J, Kerchen G (2014) Frequency-domain subspace identification for nonlinear mechanical systems.  J  Mech Sys Signal Proces40: 701–717.
[7] Dohler M, Mevel L (2010) Crystal Clear SSI for Operational Modal Analysis of Aerospace Vehicles. 28th International Modal Analysis Conference. Berlin, Geramany.
[8] Goursat M, Dohler M, Mevel L, Anderson P (2011) Crystal Clear SSI for Operational Modal Analysis of Aerospace Vehicles. Structural Dynamics 3.
[9] Kompalka AS, Reese S, Bruhns OT (2007)     Experimental investigation of damage evolution by data-driven  stochastic subspace identification and iterative finite element model updating. J Appl Mech 77: 559-573.
[10] Collins JD, Hart GC, Hasselman TK, Kennedy B, (1974) Statistical identification of structures. AIAA J 12: 185-190.
[11] Dunn S, Peucker S, Perry J (2005) Genetic algorithm optimisation of mathematical models using distributed computing. Appl Intell 23: 21-32.
[12] Moradi S, Fatahi L, Razi P (2010) Finite element model updating using bees algorithm. Struct Mutltidiscip Opt 42: 283-291.
[13] Malekzehtab H, Golafshani AA (2013) Damage detection in an offshore jacket platform using genetic algorithm based finite element model updating with noisy modal data. Procedia Engineering 54: 480-490.
[14] Chouksey M, Dutt JK, Modak SV (2013) Model updating of rotors supported on ball bearings and its application in response prediction and balancing. J Meas 46: 4261-4273.
[15] Moradi S, Alimouri P (2013) Crack detection of plate using differential quadrature method. J Mech Eng Sci 227(7): 1495-1504.
[16] Benveniste A, Fuchs JJ (1985) Single sample modal identification of a nonstationary stochastic process. IEEE Trans Autom Control AC 30 (1): 66-74.
[17] Peeters B, Roeck G De (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6): 855-878.
 [18] Benveniste A, Mevel L (2007) Nonstationary consistency of subspace methods. IEEE Trans Autom Control AC 52(6): 974-984.
 [19] Van der Auweraer H, Leurs, Mas P, Hermans L (2000) Modal parameter estimation from inconsistent data sets. Proceeding of the 18th International Modal Analysis Conference, San Antonio, TX, USA.
[20] Cruz A, Vélez W, Thomson P (2010) Optimal sensor placement for modal identification of structures using genetic algorithms – a case study: the olympic stadium in Cali, Colombia. Annals of Operations Research 181(1) :769-781.
[21] Cara OS (2012) Nondestructive evaluation of constructed facilities using vibration testing. Mech Syst Signal Process 39: 691-715.
[22] موسویان س (1394) استخراج مشخصه‌های دینامیکی و ارتعاشی شفت‌های دمی بالگرد شاهد 278 به همراه کوپلینگ‌های انعطاف‌پذیر آن. پایان­نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز.
[23] فتاحی ل (1393) تشخیص ترک در قاب­ها با بهره­گیری از مدل المان کوادراتور دیفرانسیلی. پایان­نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز.
[24] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks 4: 1942-1948.
[25] Nelder J.A, Mead R, (1965) A simplex method for function minimization.Comput J 7: 308-313.