An Experimental Study and Statistical Modelling on Compressive Properties of Epoxy/ Graphene/ Hydroxyapatite Nanocomposites

Authors

Member of Board in Islamic Azad University- Shahrood Branch

Abstract

In this article, an experimental and numerical study on compression strength, energy and elongation at break of epoxy based nanocomposites reinforced by graphene oxide and hydroxyapatite has been done. Graphene oxide and hydroxyapatite were used up to 0.5 & 7 wt.%, respectively. Filler's weight fractions that used as design parameters have been achieved by design of experiment through central composite design method. Weight fractions of fillers have been considered as input parameters for modeling by RSM, ANN & regression tree method. Experimental results show the addition of nanoparticles increase compression strength. Also, modeling results show that average error of ANN has the lowest average error. Optimization has been done by genetic algorithm method and the results show that the optimum value of compression strength was 23.95 Mpa in 7 wt.% of HA and 0.289 wt.% of GO. The optimum value of energy has been reported 33.3 J in 0.239 wt.% GO and in absence of HA nanoparticles. Also, the optimum value of elongation at break is in 0.224 wt.% GO and absence of HA that is equal to 23.98 percent.

Keywords

Main Subjects


[1] Gong L, Zhao L, Tang L, Liu H, Mai Y (2015) Balanced electrical thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles. Compos Sci Technol 121 (9): 104-114.
[2] خلینا م، بهشتی م‌ح (1392) رزین­های اپوکسی-بررسی مورفولوژی و خواص ریزساختارهای آمیزه­های اپوکسی. مطالعه­ی ویژه­ دوره­ دکتری مهندسی پلیمر.
[3] Lee J J, Shin D K (1989) Design and evaluation of a fault-tolerant multiprocessor using hardware recovery blocks. IEEE Trans Comput 38 (9): 1336 – 1337.
[4] Huang G, Wang S, Song P, Wu C, Chen S, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypylene nanocomposites. Compos Part A-APPL S 59: 18-24.
[5] Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72(1): 1-6.
[6] Wang C, Lan Y, Yu W, Li X, Qjan Y, Liu H (2016) Preparation of amino-functionalized graphene oxide/ polyimide composite films with improved mechanical, thermal and hydrophobicproperties, Appl Surf Sci, 362: 11-19.
[7] J. Li, Y. F. Zheng (2008) Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl Surf Sci, 255 (2): 494-497.
[8] Zebarjad S M, Sajjadi S A, Sadrabadi T E, Yaghmaei A, Naderi B (2011) A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite, Eng, 3: 795-801.
[9] Osorio A G, Dos santos L A, Bergmann C P (2011) Evaluation of the mechanical properties and microstructure of hydroxyapatite reinforced with carbon nanotubes. Rev Adv Mater Sci, 27: 58-63.
[10] Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X (2005) Nano-composite of poly (L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomater, 26 (32): 6296-6304.
[11] Mannov E, Schmutzler H, Chandrasekaran S, Viets C, Buschhorn S, Tolle F, Mulhaupt R, Schulte K (2013) Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos Sci Technol, 87: 36-41.
[12] Wan Y J, Tang L C, Yan D, Zhao L, Li Y B, Wu L B, Jiang J X, Lai G Q (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol, 82: 60-68.
[13] Sathiyamurthy S, Thaheer A S, Jayabal S, (2013) Prediction and optimization of mechanical properties of patricles filled coir-polyester composites using ANN and RSM algorithms. Indian J Fiber & Text, 38: 81-86.
[14] Fereidoon A, Mashhadzadeh A H, Rostamiyan Y, (2013) Experimental, modeling and optimization study on the mechanical properties of epoxy/highimpact polystyrene/multi-walled carbon nanotube ternary nanocomposite using artificial neural network and genetic algorithm. Sci Eng Compos Mater 20 (3): 265-276.
[15] Low K L, Tan S H, Sharif Zein S H, McPhail D S, Boccaccini A R (2011) Optimization of the mechanical properties of calcium phosphate/multi-walledcarbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Design 32 (6): 3312-3319 .
[16] ASTM D695-02, Standard test method for tensile properties of plastics, (2002).
[17] احمدی ح، لیاقت غ ح، شکریه م م (1393) تحلیل تجربی تأثیر پارامترهای ساخت بر خواص مکانیکی فوم­های ترکیبی اپوکسی/ میکروبالن سرامیکی. ماهنامه علمی پژوهشی مهندسی مکانیک مدرس 2.
[18] Zebarjad S, Sajjadi A, Sadrabadi T, Yaghmaei A, B (2011) A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposites. Eng, 3 (8): 795-801 .
[19] Rostamiyan Y, Hamed Mashhadzadeh A, Salmankhani A (2013) Optimization of mechanical properties of epoxy-based hybrid nanocomposite: Effect of using nano silica and high-impact polystyrene by mixture design approach Mater Design 56 (3): 1068-1077 .
[20] Ciresan D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign classification. Neur Net 32 (5): 333-338.
[21] Tabachnick G. Barbara F. Linda L (2007) Using Multivariate Statistics (5th ed.), Boston: Pearson International Edition.
[22] Box G E P (1954) Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. Ann Math Stat, 25 (2): 290-302.
[23] Venter G, Haftka R T, Starnes J H (1996) Construction of response surfaces for design optimization applications, AIAA, 96: 4040-4052.
[24] جبروتی ع، غفرانی ع ا (1394) معرفی روش شناسی سطح پاسخ، چهارمین همایش فن­آوری­های نوین شیمی و مهندسی شیمی.
[25] Belli R, Kreppel S, Petschelt A, Hornberger H, Boccaccini AR, Lohbauer U (2014) Strengthening of dental adhesives via particle reinforcement. J Mech Behav Biomed Mater. 37 (5): 100-108.
[26] Taheri M M, Kabir M R A, Shokuhfar T, Hamlekhan A, Shirdar M R, Naghizadeh F (2015) Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application. Mater Design, 82 (7): 119-125 .
[27] نجفی م، انصاری ر، درویزه ا (1396) بررسی تجربی تأثیر روش اختلاط نانورس بر خواص مکانیکی کامپوزیت­های پلیمری و چند لایه­های الیافی فلزی. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها، 7 (2): 63-80.
[28] Zhang H, Zhang Z, Fredrich K, Egar C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater, 54 (7): 1833-1842.
[29] Bindu M G G, Satapathy B K, Jaggi H S, Ray A R (2013) Size-scale effects of silica on bis-GMA/TEGDMA based nanohybrid dental restorative composites. Compos. Part B Eng, 53: 92-102.
[30] Shariati M, Farzi G A, Dadrasi A (2015) Mechanical properties and energy absorption capability of thin-walled square columns of silica/epoxy nanocomposite. Const Build Mater, 78 (5): 362-368.
[31] Argon A S (1972) Fracture of Composites, Treatise of Material Science and Technology. Compos Mater, Academic Press, New York, 1.
[32] Dai J F, Li B (2010) Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene, J Appl Polym Sci, 116 (4): 2157–2165 .
[33] آل­بویه ع (1395) تحلیل عددی خواص مکانیکی نانوکامپوزیت­های متخلخل مزوپروس سیلیکا و هیدروکسی آپاتیت، پلی­پروپیلن. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 6 (3): 299-309.
[34] Li J, Liu X, Zheng Y F, (2008) Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl Surf Sci, 255 (2): 494-497.
[35] Baradaran S, Moghaddam E, Basirun W J, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam M R, Alias Y (2013) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite, Carbon, 69 (5): 32-45.
[36] آشنای قاسمی ف، قاسمی ا، بصیری م (1394) تحلیل تجربی خواص مکانیکی پلی­پروپیلن در حضور نانوصفحات گرافن و پلی­اولفین الاستومر در زمان­های ساخت متفاوت. ماهنامه علمی پژوهشی مهندسی مکانیک مدرس، 11 (5): 178-189.
[37] Kiran M, Shrikant A, Survase P, Saudagar S, Rekha S (2014) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. BioChem Eng J,  41 (3): 266-273.
[38] Ahmad Z, Bahadori A, Zhang J (2017) Prediction of Combustion Efficiency using Multiple Neural Networks. Chem Eng Trans, 56 (3): 85-91.