Analysis the Simultaneous Effects of Injection Pressure and EGR on the Engine Performance and the Amount of Pollutant Emissions in a High Speed Direct Injection (HSDI) Diesel Engine

Authors

1 Assistant Professor in the Department of Mechanical Engineering at University of Ayatollah Boroujerdi

2 Undergraduate Student in Mechanical engineering, University of Ayatollah Borujerdi

Abstract

In the current research, a CFD simulation has been carried out to investigate the simultaneous effects of injection pressure and Exhaust Gas Recirculation (EGR) on the engine performance and the amount of pollutant emissions in a modern High Speed Direct Injection (HSDI) diesel engine. For this purpose, the computational results have been firstly compared to the measured data and a good agreement has been achieved in regard to predicting the in-cylinder pressure and the amount of NOx and soot emissions. Then, the effects of injection pressure has been studied at the various EGR rates. The results show, in the case of a constant injected fuel and without using the EGR, decreasing the nozzle diameter causes increase of Indicated Mean Effective Pressure (IMEP) and reduction of Indicate Specific Fuel Consumption (ISFC). However, the amount of NOx emission has been largely increased and the amount of soot emissions has been decreased. By applying the different percentage of EGR rates, a potential to decrease the amount of NOx emission have been provided while the engine operating conditions (including the ISFC and IMEP) remain constant. However, the increase of soot emissions should be considered as a negative parameter in this case.

Keywords

Main Subjects


[1] Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, NewYork.
[2]  Stumpp G, Ricco M (1996) Common rail - An attractive fuel injection system for passenger car DI diesel engines. SAE Tech Paper 960870.
[3]  Mobasheri R, Peng Z, Mirsalim SM (2012) Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int J Heat Fluid Fl 33(1): 59-69.
[4]  Nehmer DA, Reitz RD (1994) Measurement of the effect of injection rrate and split injections on diesel enginesoot and NOx emissions. SAE Tech Paper 940668.
[5]  Dronniou N, Lejeune M, Balloul I, Higelin P (2005) Combination of high EGR rates and multiple injection strategies to reduce pollutant emissions. SAE Tech Paper 2005-01-3726.
[6]  Richards K, Subramaniam M, Reitz R, Lai M (2001) Modeling the Effects of EGR and injection pressure on emissions in a high-speed direct-injection diesel engine. SAE Tech Paper 2001-01-1004.
[7]  Mobasheri R, Peng Z (2012) A computational investigation into the effects of included spray angle on heavy-duty diesel engine operating parameters. SAE Tech Paper 2012-01-1714.
[8]  Zhu Y, Zhao H, Melas D, Ladommatos N (2004) Computational study of the effects of the re-entrant lip shape and toroidal radii of piston bowl on a HSDI diesel engine's performance and emissions. SAE Tech Paper 2004-01-0118.
[9] خباز س ‌ع، خوشبخت‌سرای ر (1389) بررسی نظری تأثیر فشار، زمان و طول پاشش سوخت دیزل بر عملکرد و آلاینده‌های خروجی. فصلنامه علمی- پژوهشی تحقیقات موتور 63-49 :(19)19.
[10] رستمی س، میرمحمدی ع، قبادیان ب، سوادکو ل، ابراهیمی ر (1392) اثر فشار و زمان پاشش سوخت بر عملکرد موتور در جایگزینی سوخت دیزل با بیودیزل. هشتمین همایش بین‌المللی موتورهای درونسوز و نفت.
[11] Ghazikhani A, Zangooee M, Darandi MRA (2007) Investigation of the effect of injection pressure on engine specific fuel consumption and exhaust emissions in turbocharged diesel engines. 15th Annual Conference on Mechanical Engineering-ISME2007, Amirkabir University of Technology.
[12] Agarwal AK, Dhar A, Gupta JG, Kim WI, Lee CS, Park S (2014) Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine. Appl Energ 130: 212-221.
[13] Jaichandar S, Annamalai K (2013) Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 55: 330-339.
[14] فهیمی‌راد ا، هروی ح م، بشیرنژاد ک (۱۳۸۸) بررسی اثر بازگشت گازهای خروجی به محفظه احتراق بر تشکیل آلاینده‌ها. سومین کنفرانس احتراق ایران، تهران، انجمن احتراق ایران، دانشگاه صنعتی امیر‌کبیر.
[15] سلطانی‌نظر‌لو پ، حاجی آقا‌علیزاده ح، ربانی ح، شدیدی ب (۱۳۹۲) بررسی اثر باز خورانی گازهای اگزوز بر عملکرد و انتشار آلاینده نیتریک اکسید موتور اشتعال تراکمی. هشتمین کنگره ملی مهندسی ماشین‌های کشاورزی (بیوسیستم) و مکانیزاسیون ایران، مشهد، دانشگاه فردوسی مشهد.
[16] Hussain J, Palaniradja K, Alagumurthi N, Manimaran R (2012) Effect of exhaust gas recirculation (EGR) on performance and emission characteristics of a three cylinder direct injection compression ignition engine. AEJ 51(4): 241-247.
[17] ICE Physics & Chemistry (2013) AVL FIRE user Manual v.2013. 1.
[18] Arcoumanis C, Gavaises M, French B (1997) Effect of fuel injection process on the structure of diesel sprays. SAE Tech Paper 970799.
[19] Dukowicz JK (1979) Quasi-steadydroplet change in thepresence ofconvection. informal report LosAlamos Scientific Laboratory.
[20] Hanjalic K, Popovac M, Hadziabdic M (2004) A robust near-wallelliptic relaxation eddy-viscosity turbulence  model  for  CFD. Int J Heat Fluid Fl 25: 1047-1051.
[21] Durbin P (1991) Near-wall turbulence closure modeling without damping functions. Theor Comp Fluid Dyn 3: 1-13.
[22] Colin O, Benkenida A (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion comb. Oil Gas Sci Technol Rev IFP 59(6): 593-609.
[22] Mobasheri R, Peng Z (2012) D-CFD modeling of the effects of injection timing on the combustion process and emissions in a high speed direct injection (HSDI) diesel engine. Torino, Piemonte, Italy. ICES2012-81137.