Low-velocity impact response of A356/SiCp composite foam

Authors

1 Department of Mechanical Engineering, Birjand Branch, Islamic Azad University, Birjand, Iran.

2 Department of Mechanical Engineering, University of Birjand, Birjand, Iran.

Abstract

Metallic foams are used widely in the automotive and aerospace industries due to high strength to weight ratio and high energy absorption capacity. Knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. In this paper, the impact response of A356 aluminum foams reinforced by SiC particles was studied. Predicted numerically results, which are obtained from the simulation of impact behavior at the foam material, were compared and validated with the experimental measurements. For determination of the material parameters in Deshpande-Fleck constitutive model, the uniaxial compression test data have been used. The FEM results showed that the changes in load with time are in a good agreement with the impact experiment. The numerical model can predict accurately the plateau load, the impact time, the energy absorbed by foam and the failure mode of the material. The energy balance diagram and convergence test confirm the simulation. Considering that the simulation of porous and composite material behavior is faced with numerous challenges, this work presents effective ways to solve them. Regarding the lack of numerical and experimental results on the impact behavior of A356/SiCp foam, the obtained results can be used to develop advanced composite materials.

Keywords

Main Subjects


[1]  Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams: a Design Guide. Boston, Butterworth: Heinemann.
[2]  Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6): 559-632.
[3]  Michailidis N, Stergioudi F, Tsouknidas A (2011) Deformation and energy absorption properties of powder-metallurgy produced Al foams. Mat Sci Eng A 528(24): 7222-7227.
[4]  Alizadeh M, Mirzaei-Aliabadi M (2012) Compressive properties and energy absorption behavior of Al–Al2O3 composite foam synthesized by space-holder technique. Mater Design 35: 419-424.
[5]  Hanssen AG, Hopperstad OS, Langseth M, Ilstad H (2002) Validation of constitutive models applicable to aluminium foams. Int J Mech Sci 44(2): 359-406.
[6] Schreyer HL, Zuo QH, Maji AK (1994) Anisotropic Plasticity Model for Foams and Honeycombs. J Eng Mech 120(9): 1913-1930.
[7] Ehlers W, Mullerschon H, Klar O (1999) On the behaviour of aluminum foams under uniaxial and multiaxial loading. Proceedings of the Conference on Metal Foams and Porous Metal Structures, Breman, Germany, pp. 255-262.
[8] Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48(6-7): 1253-1283. 
[9]  Miller RE (2000) A continuum plasticity model for the constitutive and indentation behavior of foamed metals. Int J Mech Sci 42(4): 729-754.
[10] Reyes A, Hopperstad OS, Berstad T, Langseth M (2004) Implementation of a Constitutive Model for Aluminum Foam Including Fracture and Statistical Variation of Density. 8th International LS-DYNA Users Conference, Michigan, pp. 11-24.
[11] Song HW, Fan ZJ, Yu G, Wang QC, Tobota A (2005) Partition energy absorption of axially crushed aluminum foam-filled hat sections. Int J Solids Struct  42(9-10): 2575-2600.
[12] Gameiro CP, Cirne J (2007) Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler. Int J Mech Sci 49(9): 1029-1037.
[13] Ahmad Z, Thambiratnam DP, Tan AC (2010) Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading. Int J Impact Eng 37(5): 475-488.
[14] Bi J, Fang H, Wang Q, Ren X (2010) Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs. Finite Elem Anal Des 46(9): 698-709.
[15] Hanssen AG, Girard Y, Olovsson L, Berstad T, Langseth M (2006) A numerical model for bird strike of aluminium foam-based sandwich panels. Int J Impact Eng 32(7): 1127-1144.
[16] Miranda V, Teixeira-Dias F, Pinho-da-Cruz J,  Novo F (2010) The role of plastic deformation on the impact behaviour of high aspect ratio aluminium foam-filled sections. Int J Nonlinear Mech 45(5): 550-561.
[17] Lu G, Shen J, Hou W, Ruan D, Ong LS (2008) Dynamic indentation and penetration of aluminium foams. Int J Mech Sci 50(5): 932-943.
[18] Rajendran R, Moorthi A, Basu S (2009) Numerical simulation of drop weight impact behaviour of closed cell aluminium foam. Mater Design 30(8): 2823-2830.
[19] Ivaez I, Santiuste C, Sanchez-Saez S (2010) FEM analysis of dynamic flexural behavior of composite sandwich beams with foam core. Compos  Struct 92(9): 2285-2291.
[20] Ivaez I, Santiuste C, Barbero E, Sanchez-Saez S (2011) Numerical modeling of foam-cored sandwich plates under high-velocity impact. Compos Struct 93(9): 2392-2399.
[21] Cho JU, Hong SJ, Lee SK, Cho C (2012) Impact fracture behavior at the material of aluminum foam. Mat Sci Eng A 539: 250-258.
[22] Hosun C, Jaeung C (2014) Damage and penetration behavior of aluminum foam at various impacts. J Central South Univ 21(9): 3442-3448.
[23] ضیاء شمامی م، خدارحمی ح، واحدی خ، پل م‌ح (1392) بررسی تجربی و عددی نفوذ پرتابه صلب سرتخت در سازه ساندویچی با هسته فوم آلومینیومی. مجله مهندسی مکانیک مدرس 13-1 :(5)13.
[24] جعفری س‌س، فعلی س (1394) بررسی تحلیلی برخورد پرتابه استوانه­ای با دماغه­های مختلف به ورق­های ساندویچی. مجله مدل­سازی در مهندسی 77-65 :(42)13.
[25] زمانی ا، لیاقت غ، شاهوردی ح ر (1391) مطالعه تحلیلی و عددی فروریزش فوم آلومینیوم در برابر ضربه صفحه­ای سرعت بالا. مجله علمی-پژوهشی مواد پرانرژی 62-55 :(1)7.
[26] ملاطفی ح، مظفری هـ (1393) بررسی رفتار صفحه­ای لانه­زنبوری پرشده با فوم تحت شرایط شبه­استاتیکی و دینامیکی با استفاده از روش عددی. مجله مهندسی مکانیک مدرس 185-177 :(15)14.
[27] چوبینی م، لیاقت غ، پل م‌ح (1394) بررسی تجربی و عددی جذب انرژی و تغییرشکل لوله­های جدارنازک توخالی و توپر با هندسه مقاطع دایره و مربع تحت بار ضربه­ای عرضی. مجله مهندسی مکانیک مدرس 83-75 :(1)15.
[28] علوی­نیا ع، کاظمی م (1394) بررسی تحلیلی ضربه سرعت­بالا بر روی پانل­های ساندویچی با هسته فوم و رویه­های آلومینیومی. مجله مهندسی­مکانیک مدرس 239-231 :(6)15.  
[29] علوی­نیا ع، فرشاد ع (1393) بررسی تجربی و عددی تأثیر هندسه مقطع و فوم فلزی بر روی تغییرشکل و ویژگی­های جذب انرژی لوله­های جدارنازک. مجله علمی-پژوهشی مکانیک سازه­ها و شاره­ها 63-51 :(1)4.
[30] آذرخش س، قمریان ع، خدارحمی ح (1395) تحلیل فروریزش محوری و مایل پوسته­های مخروطی توخالی و تقویت­شده با فوم تحت شرایط مرزی گیردار. مجله علمی-پژوهشی مکانیک سازه­ها و شاره­ها 159-139 :(4)6
[31] فراهت ح، احمدی بروغنی س‌ی (1395) بررسی تأثیر عملیات حرارتی بر روی پاسخ ضربه فوم آلومینیوم با رویکرد تحلیل آماری. مجله مهندسی ­مکانیک مدرس     206-199 :(10)16.
[32] فراهت ح، احمدی بروغنی س‌ی (1395) ساخت و مجهزسازی ماشین ضربه سقوطی کم­سرعت جهت تعیین ظرفیت جذب انرژی در فوم کامپوزیتی با زمینه آلومینیوم. مجله مهندسی ­مکانیک مدرس 228-219 :(7)16.
[33] Szyniszewski ST, Smith BH, Hajjar JF, Schafer BW, Arwade SR (2014) The mechanical properties and modeling of a sintered hollow sphere steel foam. Mater Design 54: 1083-1094.
[34] Reyes A, Hopperstad OS, Berstad T, Hanssen AG, Langseth M (2003) Constitutive modeling of aluminum foam including fracture and statistical variation of density. Eur J Mech A-Solid 22(6): 815-835.
[35] Technical Committee ISO/TC 164 (2011) Compression test for porous and cellular metals–ISO 13314.
[36] Standard Test Method: JIS  (2008) Comprsssion test of porous metals– JIS H 7902.
[37] American Society for Testing and Materials (2002) Standard Test Method for High Speed Puncture Properties of Plastics Using Load and Displacement Sensors, ASTM D 3763.
[38] LS-DYNA Keyword User’s Manual, Version 971 R6.1 (2012) Livermore Software Technology Corporation.
[39] J. O. Hallquist (2006) LS-DYNA Theory Manual. Livermore software technolog Corporation.
[40] Ramachandra S, Kumar PS, Ramamurty U (2003) Impact energy absorption in an Al foam at low velocities. Scripta Mater 49(8): 741-745.
[41] Li QM, Maharaj RN, Reid SR (2005) Penetration resistance of aluminium foam. Int J Vehicle Des 37(2-3): 175-183.
[42] K. Mohan, T. H. Yip, S. Idapalapati, Z. Chen (2011) Impact response of aluminum foam core sandwich structures. Mat Sci Eng A 529: 94-101.