Numerical and Experimental Investigation into Heat Transfer Process in a Fluidized Bed of Alumina Powder

Authors

Abstract

In this study, the process of heat transfer in a fluidized bed of particles belonging to group A of Geldart classification was investigated. For this, an experimental setup was installed, in which a bubble fluidity regime was formed with the combination of hot air and alumina powder belonging to group A of Geldart classification. In each experiment, the temperature of solid phase and outlet gas were measured and recorded over the time, by keeping temperature constant at the inlet opening. Due to the low humidity level of solid particles, mass transfer between the phases was ignored. In the following, using three phase modeling equations and experimental data, a correlation has been provided for predicting heat transfer coefficient between the solid and interstitial gas phases. In this study, heat capacity of alumina powder has been considered as a function of temperature. In addition, finite volume method has been used for solving three-phase model equations. The results of this study show very good conformity between experimental data and numerical simulation so that the maximum error of numerical modeling with experimental data is 9% and the highest temperature variation in the bed happens early in 2 minutes of the process that demonstrates the high rate of heat transfer is in this type of beds.

Keywords

Main Subjects


[1] Ye M, Van der Hoef MA, Kuipers JJM (2005) The effects of particle and gas properties on the fluidization of Geldart A particlesc. Chem Eng Sci 60(5): 4567-4580.
[2] Chunbao XU, Zhu JX (2006) Effect of gas type and temperature on fine particle fluidization. China particuology 4(3): 114-121.
[3] Hariprasad J Subrani, M B Mothivel Balaiyya, Lima Rose Miranda (2007) Minimum fluidization velocity at elevated temperatures for Geldart´s group-B powders. Exp Therm Fluid Sci 32(2007): 166-173.
[4] Kunni Diazo, Levenspiel Octave (1991)Fluidization Engineering. 2nd edn. Butterworth-Heinemann.
[5] پهلوان زاده ح، منطقیان م، قائم مقامی ف (1387) تعیین ضریب‌های انتقال جرم و حرارت در خشک‌کن‌های بستر سیال به صورت تابعی از رطوبت ماده. نشریه شیمی و مهندسی شیمی ایران 50-41 :(4)27.
[6] گازر ح (1388) مدل‌سازی سینتیک خشک شدن کلزا در خشک کن بستر سیال. مجله بیو سیستم مهندسی ایران   184-175 :(2)40.
[7] عباسی سورکی ب، امیدی م، قنادزاده ح (1391) مدل‌سازی ریاضی خشک کردن ذرات کروی نخود سبز در یک خشک‌کن بستر سیالی ناپیوسته. چهاردهمین کنگره ملی مهندسی شیمی ایران تهران.
[8] خورشیدی ج، داوری ح (1392) بکارگیری روش‌های آماری برای پیش بینی تغییرات دمایی در یک خشک‌کن بستر سیال. پانزدهمین کنفرانس دینامیک شاره‌ها (سیالات)، بندرعباس.
[9] Vitor João FA, Biscaia JR, Evaristo C, Massarani G (2004) Modeling of biomass drying in fluidized bed. Proceedings of 14th International Drying Symposium B: 1104-1111.
[10] RJ AC, Passos ML, Freire JT ( 2009) Modeling and simulating the drying of grass seeds (brachiariabrizantha) in fluidized beds: evaluation of heat transfer coefficient. Brazilian j Chem Eng 26(3): 545-554.