Seismic characteristics of tunnel form concrete buildings with irregular plan

Authors

Abstract

The necessity of being regular in plan and elevation of concrete tunnel form buildings in spite of accelerating the manufacturing process and high quality assurance, following several limitations in architectural design and puts limits on the application of this system in areas where there is no possibility of symmetrical construction. Loss of R-factor in the current earthquake regulations is a major challenge in design of these structures. In this study, the seismic behavior of two-tunnel form structures with 5 and 10 stories with irregular floor plans is investigated and the demand/ capacity behavior factor, based on seismic demand and capacity of structure have been calculated respectively. The most distinctive feature of this study is multi-level definition of the behavior factors and their extraction with respect to seismic intensity, and accepted damage level as expected performance levels in designing structure. Moreover surveying literature showed that the lack of adequate study of seismic characteristic of this type of tunnel form buildings. Also, uncoupled frequency ratios and fragility curves are determined for studied models by incremental dynamic analysis (IDA). The results show high capacity of the system and flexible torsional behavior of the structures due to their irregularity. Since both structures are placed in the immediate occupancy performance level in design earthquake, it seems that criteria which necessitate tunnel form structures to be regular in plan, are strict and prudent for the studied structures.

Keywords

Main Subjects


[1] میرقادری س‌ر، سروقدمقدم ع، یوسف‌پور ح، پهلوان ح (2009) ارزیابی رفتار لرزه‌ای غیرخطی ساختمان‌های بتنی ساخته شده با‌کاربرد قالب‌تونلی، اولین کنفرانس بین‌المللی تکنولوژی بتن، ایران، تبریز، 6 و 7 نوامبر.
[2] Balkaya C, Kalkan E (2004) Seismic vulnerability, behavior and design of tunnel form building structures. Eng Struct 26(14): 2081-2099.
[3] Lee L, Chang K, Chun Y (2000) Experimental formula for the fundamental period of RC building with shear wall dominant systems. Struct Des Tall Buil  9(4): 295-307.
[4] Balkaya C, Kalkan E (2003) Estimation of fundamental periods of shear-wall dominant building structures. Earthquake Eng Struct Dyn 32(7): 985-998.
[5] Balkaya C, Kalkan E (2004) Relevance of R-factor and fundamental period for seismic design of tunnel-form building. 13th World Conference on Earthquake Engineering, Vancouver, Canada.
[6] Balkaya C, Kalkan E (2003) Seismic design parameters for shear-wall dominant building structures. 14th national congress on Earthquake Engineering, mexico, 2003.
[7] Yuksel SB, Kalkan E (2007) Behavior of tunnel  form buildings under quasi_static cyclic lateral loading. Struct Eng Mech 27(1): 99-115.
[8] Kalkan E, Yuksel SB (2007) Pros and cons of multi story RC tunnel-form (box-type) buildings. Struct Des Tall Buil 17(3): 601-617.
[9] Tavafoghi A, Eshghi S (2008) Seismic behavior of tunnel form concrete building structures. 14th World Conference on Earthquake Engineering, 12-17 October, Beijing, China.
[10] عشقی س، توافقی ‌جهرمی ع (1391) بررسی آزمایشگاهی رفتار لرزه‌ای ساختمان‌های بتنی با سیستم تونلی، نشریه علمی پژوهشی امیر‌ کبیر، مهندسی عمران، سال 44، شماره 1، صفحات 31-42.
[11] فناوری‌های تایید شده در راستای جزء 2-6، بند "د"، تبصره 6 (1386) گامی در صنعتی‌سازی ساختمان، ویرایش اول، انتشارات مرکز تحقیقات ساختمان و مسکن، صفحات 21 و 22.
[12] محسنیان و (1391) تعیین ضریب رفتار برای سازه‌های بتنی قالب تونلی، پایان‌نامه کارشناسی ارشد مهندسی عمران، گرایش زلزله، دانشگاه علم و فرهنگ تهران.
[13] Permanent Committee for Revising the Standard 2800 (2014) Iranian code of practice for seismic resistant design of buildings, Building and Housing Research Center, Tehran, Iran.
[14] ACI Committee 318 (2007) Building code requirements for structural concrete (ACI 318-08) and commentary, American Concrete Institute.
[15] Computers and Structures Inc. (CSI) (2008) Structural and Earthquake Engineering Software, ETABS, Extended Three Dimensional Analysis of Building Systems Nonlinear Version 9.5.0, Berkeley, CA, USA.
[16] Paulay T, Binney JR (1974) Diagonally reinforced coupling beams of shear-walls. ACI Special SP-42 2: 579–598.
[17] Computers and Structures Inc. (CSI) (2007) Structural and Earthquake Engineering Software, PERFORM-3D Nonlinear Analysis and Performance Assessment for 3-D Structures, Version 4.0.3, Berkeley, CA, USA.
[18]  Technical Criteria Codification & Earthquake Risk Reduction Affairs Bureau (2007) Instruction for seismic rehabilitation of existing buildings, No. 360, Management and Planning Organization, Iran.
[19] ASCE (2007) Seismic Rehabilitation of Existing Buildings, ASCE/SEI41-06, American Society of Civil Engineers.
[20] PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, Web Site: http://peer.berkeley.edu/peer_ground_motion_database.
[21] Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthquake Eng Struct Dyn 31(3): 491-514.
[22] بهشتی‌اول س‌ب (1391) بهسازی لرزه‌ای ساختمان‌های موجود، جلد اول، چاپ اول، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، صفحات 725-756 و 211-242.
[23] Berahman F, Behnamfar F (2007) Seismic fragility curves for un anchored on-grade steel storage tanks: bayesian approach. J Earthquake Eng 11(2): 166-192.
[24] Cimellaro GP, Reinhorn AM, Bruneau M,  Rutenberg A (2006) Multi-dimensional fragility of structures: formulation and evaluation. Technical report MCEER-06-0002.
[25] Nielson BG (2005) Analytical fragility curves for highway bridges in moderate seismic zones. A Ph.D Thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology.
[26] Kinali K (2007) Seismic fragility assessment of steel frames in the central and eastern united states. A Ph.D Thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology.
[27] Khalvati AH,  Hosseini M (2008) A new methodology to evaluate the seismic risk of electrical power substations. 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October.
[28] Bertro VV (1989) Evaluation of response reduction factors recommended by ATC and SEAOC. Proc.3rd U.S.Nat1 Conf. on Earthquake Engineering, South Carolina , PP.1663-1670.
[29] ATC (1995a) structural response modification factors. ATC-19 Report, Applied Technology Council, Redwood City, California.
[30] Miranda E (1991) Seismic evaluation & upgrading of existing buildings. A P.hd Thesis, University of California @ Berkeley.
[31] Lia SP,  Biggs JM (1980) Inelastic response spectra for seismic building design. J Struct Div-ASCE 106(6): 1295-1310.
[32] Fajfar P (2000) A nonlinear analysis method for performance based seismic design. Earthq Spectra l16(3): 573-592.
[33] ATC (1996) Seismic evaluation of concrete buildings, Vol.1, ATC-40, Applied Technology Council, Redwood, CA.
[34] Annigeri S, Mittal AK (1996) Uncoupled frequency ratio in asymmetric buildings. Earthquake Eng Struct Dyn 25(8): 871-881.
[35] Tso WK, Wong CM (1995) Eurocode 8 seismic torsional provision evaluation. Eur Earthq Eng 9(1): 23-33.
[36] Jeong SH, Elnashai A (2006) New three-dimensional damage index for RC buildings with planar irregularities. J Struct Eng-ASCE 132(9): 1482-1490.