Experimental and numerical study of V-Cone flowmeter with continuous nose in single phase liquid flow

Authors

South Tehran Branch, Islamic Azad University

10.22044/jsfm.2024.12890.3718

Abstract

With increasing importance of flow measurement in industries, especially in petrochemical and water and wastewater, and their need to reduce the installation space and increase the accuracy, it is necessary to improve the existing flowmeters and produce new types. In the last two decades, the V-Cone flowmeter has received the special attention of researchers with features such as reducing the required initial length, lower pressure drop compared to other types, and the ability to be used in two-phase flows. Also, several researches were done to improve the flowmeter geometry. But one of the things that is less discussed is how to connect the flowmeter stand to the body (flowmeter nose). Therefore, in this research, experimental and numerical study of a new case that has a continuous nose, and comparing it with standard types including pointed, curved and elbow, have been done. Using test results, correlations were proposed to estimate the pressure drop between two flowmeter sensors and the pressure loss. Calculations showed that the relative error of pressure drop calculation in the range of Reynolds numbers investigated (5.88 × 104 to 9.80 × 104) is about -0.73%. Numerical simulation showed that the continuous type with the highest level of disturbance (about 3.5% more than the minimum value) causes the increase of fluctuations in the value shown by the pressure gauge located downstream and the error in the calculation of the discharge coefficient. Also, changing the shape of the flowmeter nose caused only minor changes in the size of the vortexes.

Keywords

Main Subjects


[1] Miller RW (1989) Flow Measurement Engineering Handbook. second ed. McGraw Hill Publishing Company, New York, pp. 7.1–7.8.
[2] Singh SN, Seshadri V, Singh RK, Gawhade R (2006) Effect of upstream flow disturbance on the performance characteristics of a V-Cone flowmeter, Flow Meas. Instrum. 17(5): 291-297
[3] Singh Rajesh Kumar, Singh SN, Seshadri V(2010) CFD prediction of the effects of the upstream elbow fittings on the performance of cone flowmeters, Flow Meas. Instrum. 21: 88–97
[4] Borkar Kishor, Venugopal A, Prabhu SV (2013) Study on the design and performance of a bi-directional cone flowmeter, Flow Meas. Instrum. 34: 151-159
[5] Zheng Xuebo, Sun Xiaodong, Bai Bofeng (2018) Flow rate measurement of low GVF gas-liquid two-phase flow with a V-Cone meter. Exp. Therm. Fluid Sci. 91: 175-183
[6] فدایی مهدی، عاملی فروغ، هاشم آبادی سیدحسن (1398) مطالعه تجربی و شبیه سازی  CFDاندازه­گیری جریان دوفازی با استفاده از دبی سنج روزنه­ای. پژوهش نفت. شماره 108
[7] Nasiruddin Sheikh, Singh SN, Veeravalli SV, Hegde S (2019) Shape optimization of the cone body for the improved performance of the V-cone flowmeter: A numerical study. Flow Meas. Instrum. 66: 111-118
[8] Nasiruddin Sheikh, Singh SN, Veeravalli SV, Hegde S (2020) Effect of Reynolds number and boundary layer thickness on the performance of V-cone flowmeter using CFD. Flow Meas. Instrum. 73: 101728
[9] Nasiruddin Sheikh, Singh SN, Veeravalli SV, Hegde S (2020) Flow characteristics of back supported V-cone flowmeter (wafer cone). Flow Meas. Instrum. 73: 101750
[10] Zhao Fan, Li Shanshan, Zheng Xuebo, He Denghui, Bai Bofeng (2021) A modified model for wet gas flowrate measurement considering entrainment downstream of a cone meter. Flow Meas. Instrum. 77: 101839
[11] Li Shanshan, Bai Bofeng (2022) Two-phase mass flow coefficient of the cone flow meter. 3rd International Symposium on Thermal-Fluid Dynamics (Online). 28-30
[12] He Deng-Hui, Bai Bo-Feng (2014) Two-phase mass flow coefficient of V-Cone throttle device. ETF Science. 57: 77-85
[13] ISO 5167-5, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 5: Cone meters, First ed., 2016.
 
[14] جزیرئیان حسام، جعفرکاظمی فرزاد، ربیعی­فر حمیدرضا (1400) ارزیابی عددی عملکرد فلومتر مخروطی در دو حالت تقارن محوری و سه بعدی. پنجمین همایش ملی اندازه گیری جریان سیالات در صنایع نفت، گاز، پالایش، پتروشیمی و آب، تهران
[15] جزیرئیان حسام، جعفرکاظمی فرزاد، ربیعی­فر حمیدرضا (1400) مطالعه عددی ساختارهای طولی و عرضی جریان در فلومتر مخروطی. دهمین کنفرانس ملی کاربرد CFD در صنایع شیمیایی و نفت، کرمانشاه
[16] Jaroslav Š (2016) Contribution to investigation of turbulent mean-flow velocity profile in pipe of circular cross-section. AIP Conference Proceedings 1768, 020010
[17] Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373: 33 – 79