Evaluation of multi-effect distillation unit (MED) for desalination of Iranshahr steam power plant effluents using heat losses of boiler blowdown

Authors

1 Mechanical Engineering Faculty, Shahrood University of Technology, Shahrood

2 Mechanical Engineering Faculty, Shahrood University of Technology

3 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

10.22044/jsfm.2024.13667.3798

Abstract

Industrial effluents is one of the important sources of pollution in industrial activities, including power plants. With the basic control of industrial effluents, in addition to preventing its harmful effects, the consumption of limited water resources is also saved. Due to the high energy consumption of different desalination systems to produce fresh water, as well as the heat losses in power plants, a major part of the effluents can be desalinated for reuse in processes that require water. In this study, the simulation of a multi-effect distillation (MED) unit for a steam power plant is done by Thermoflow software. The required thermal energy of the unit is supplied from the boiler blowdown stream. Sensitivity analysis has been done on the basic parameters in the simulation to select the optimal values. In the premier scenario, considering the eavailability of 870 m3/day of effeluent from various units of IRANSHAHR steam power plant, a MED desalination plant with 12 effects with the ability to produce 290 m3/day of fresh water is proposed. The steam consumption rate is 1.1 ton/hr, which is about one seventh of the power plant's boiler capacity. The gain of ratio of the proposed system is equal to 10.2 and the recovery ratio is 33%. The investment cost of the proposed system is 3290 $ per cubic meter of fresh water per day.

Keywords

Main Subjects


1[   م. قلی نژاد, ع. کربلایی اکبری, ا. پورعلی, م. عمیدپور,(1392)“امکان سنجی فنی و تأثیر زیست محیطی بازیابی آب و حرارت از آب دورریز شده بویلرهای بازتاب حرارت سیکل‌های ترکیبی با به کارگیری یک سیستم بازیاب,” سومین کنفرانس بین­ المللی رویکردهای نوین در نگهداشت انرژی., تهران, https://civilica.com/doc/305440.
]2[ ن. شاله, (1397) “واکاوی مصرف آب نیروگاه های خراسان و راهکارهای بهبود,” پنجمین کنفرانس بین المللی فناوری و مدیریت انرژی با رویکرد پیوند انرژی، آب و محیط زیست. تهران, https://civilica.com/doc/855159.
]3[ س. شکیب, م. عمیدپور, ع. اسماعیلی, س. حسینی,  (1390)“تحلیل ترمودینامیکی کوپلینگ آب شیرین کن چند مرحله‌ای تبخیری با واحدهای گازی نیروگاه خلیج فارس جهت برآورد میزان تولید آب شیرین,” سومین کنفرانس ملی صنعت نیروگاه‌های حرارتی. تهران, https://civilica.com/doc/156287.
]4[ ه. کاظمی and م. شفیع پورمطلق, (1398)“طراحی سیستم تولید همزمان آب و برق در نیروگاه گازی بندرعباس, https://civilica.com/doc/933248.
[5]  H. B. Harandi, A. Asadi, M. Rahnama, Z.-G. Shen, and P.-C. Sui, (2021) “Modeling and multi-objective optimization of integrated MED–TVC desalination system and gas power plant for waste heat harvesting,” Comput. Chem. Eng., vol. 149, p. 107294,doi:https://doi.org/10.1016/j.compchemeng.2021.107294.
[6]  M. Abdi-Khanghah, B. Bazooyar, M. Gonbadi, and K. C.-W. Wu (2023)“Design and optimization of MED-TVC desalination plant using mathematical modeling coupled with response surface methodology,” J. Taiwan Inst. Chem. Eng., vol. 153, p.105187,doi:https://doi.org/10.1016/j.jtice.2023.105187.
]7[ ع. کربلایی اکبری, م. قلی نژاد, ا. پورعلی, م. عمیدپور,  (1392)“تحلیل ترمودینامیکی و زیست محیطی بازیابی حرارت و تولید آب شیرین از سیستم آب خنک کن یکبار گذر نیروگاه‌های حاشیه ی خلیج فارس,” سومین کنفرانس بین­ المللی رویکردهای نوین در نگهداشت انرژی. تهران, https://civilica.com/doc/305293.
[8]  A. Ahmadi, A. R. Noorpoor, A. R. Kani, and A. Saraei (2021)“Modeling and economic analysis of MED-TVC desalination with Allam power plant cycle in Kish Island,” Iran. J. Chem. Chem. Eng., vol. 40, no. 6, pp. 1882–1892.
[9]  A. Nazarzadehfard, A. Saraei, S. Jafari Mehrabadi, and H. Mohsenimonfared (2021) “Exergy and thermoeconomic analysis of the combined MED desalination system and the Allam power generation system,” Int. J. Energy Environ. Eng., vol. 12, no. 4, pp. 679–687, 2021, doi: 10.1007/s40095-021-00409-w.
[10] E. Tayyeban, M. Deymi-Dashtebayaz, and D. Dadpour (2022) “Multi objective optimization of MSF and MSF-TVC desalination systems with using the surplus low-pressure steam (an energy, exergy and economic analysis),” Comput. Chem. Eng., vol. 160, p. 107708, doi: https://doi.org/10.1016/j.compchemeng.107708.
[11] S. Ghorbani, M. Deymi-Dashtebayaz, and E. Tayyeban (2023) “Parametric investigation and performance optimization of a MED-TVC desalination system based on 1-D ejector modeling,” Energy Convers. Manag., vol. 288, p. 117131, doi: https://doi.org/10.1016/j.enconman.2023.117131.
[12] O. Pilevar, M. Nazari, M. Nazari, and S. K. Namaghi (2023) “An improved dynamic model of MED-TVC system by considering changes in ejector conditions,” Desalination, vol. 566, p. 116870,doi:https://doi.org/10.1016/j.desal.2023.116870.
[13] N. Mehtari, M. Kahani, and M. Zamen (2023) “Energy, environmental, and economic analysis of a new configuration multi-stage flash distillation unit coupled with steam power plant,” Case Stud. Therm. Eng., vol. 50, p. 103456, doi: https://doi.org/10.1016/j.csite.2023.103456.
[14] G. Alonso, S. Vargas, E. del Valle, and R. Ramirez (2012) “Alternatives of seawater desalination using nuclear power,” Nucl. Eng. Des., vol. 245, pp. 39–48,doi:https://doi.org/10.1016/j.nucengdes.2012.01.018.
[15] M. H. Khoshgoftar Manesh, S. Kabiri, M. Yazdi, and F. Petrakopoulou (2020) “Thermodynamic evaluation of a combined-cycle power plant with MSF and MED desalination,” J. Water Reuse Desalin., vol. 10, no. 2, pp. 146–157, doi: 10.2166/wrd.2020.025.
[16] M. A. Sharaf, A. S. Nafey, and L. García-Rodríguez (2011) “Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process,” Desalination, vol. 272, no. 1–3, pp. 135–147, doi: 10.1016/J.DESAL.2011.01.006.
[17] S. Casimiro, J. Cardoso, D.-C. Alarcón-Padilla, C. Turchi, C. Ioakimidis, and J. F. Mendes (2014) “Modeling Multi Effect Distillation Powered by CSP in TRNSYS,” Energy Procedia, vol. 49, pp. 2241–2250,doi:https://doi.org/10.1016/j.egypro.03.237.
[18] J. Wellmann, K. Neuhäuser, F. Behrendt, and M. Lehmann (2015) “Modeling an innovative low-temperature desalination system with integrated cogeneration in a concentrating solar power plant,” Desalin. Water Treat., vol. 55, no. 12, pp. 3163–3171, doi: 10.1080/19443994.2014.940212.
[19] K. M. Bataineh (2016) “Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy,” Desalination, vol. 385, pp. 39–52, doi: 10.1016/j.desal.2016.02.011.
 
[20] M. Al-Addous, M. Jaradat, M. Bdour, Z. Dalala, and J. Wellmann (2020) “Combined concentrated solar power plant with low-temperature multi-effect distillation,” Energy Explor. Exploit., vol. 38, no. 5, pp. 1831–1853, doi: 10.1177/0144598720913070.
[21] A. Khouya (2022) “Performance evaluation of a MED-MVC desalination plant driven by a concentrated photovoltaic thermal system and an organic Rankine cycle,” Energy Convers. Manag., vol. 274, p. 116428, doi: https://doi.org/10.1016/j.enconman.2022.116428.
[22] I. S. Al-Mutaz and I. Wazeer (2014) “Development of a steady-state mathematical model for MEE-TVC desalination plants,” Desalination, vol. 351, pp. 9–18, doi: https://doi.org/10.1016/j.desal.2014.07.018.
[23] M. A. Lange, “3.11 - Renewable Energy and Water Resources,” R. A. B. T.-C. V. Pielke, Ed. Oxford: Academic Press, 2013, pp. 149–166.
[24] G. Kosmadakis, M. Papapetrou, B. Ortega-Delgado, A. Cipollina, and D.-C. Alarcón-Padilla (2018) “Correlations for estimating the specific capital cost of multi-effect distillation plants considering the main design trends and operating conditions,” Desalination, vol. 447, pp. 74–83, doi: https://doi.org/10.1016/j.desal.2018.09.011.