Numerical and Experimental Analysis of Bowing Defect in the Flexible Roll Forming Process of Copper-Aluminum Double Layer Sheets

Authors

1 Department of Mechanical Engineering/ Birjand University/ Birjand/ Iran

2 Assistant professor/ Depatment of mechanical engineering/ Faculty of Engelab-e Eslami/ Technical and Vocational University (TVU)

3 Department of Mechanical Engineering,, University of Birjand, Birjand, Iran

10.22044/jsfm.2024.13483.3775

Abstract

Double-layer sheet forming methods are developed in various industries due to their dual properties and wide application. In this paper, the numerical and experimental investigation of the bowing defect in the flexible roll forming process of double-layer sheets have been discussed. Numerical analysis has been conducted using Abaqus finite element software and experimental tests using a single-station flexible roll forming machine. After validation of the numerical model, the effects of significant parameters on the bowing defect in the flexible roll forming process, including the forming angle, sheet thickness, sheet wing length, and the displacement of sheet layers have been investigated using full factorial design of experiments method and finite element simulations. The results were analyzed using the Analysis of Variance statistical method. The results showed that with increase of the forming angle and wing length, the amount of bowing defect increases while it decreases with the increase of the thickness of the sheet. Also, the arrangement of layers is also effective in the occurrence of the bowing defect. The results showed that the bowing defect in the Al-Cu layer material increased from 2.152 to 2.646 mm with the increase of the wing length from 18 to 25 mm.

Keywords

Main Subjects


[1] بادپروا حسن، مسلمی نائینی حسن، کسایی محمد، دادگراصل یعقوب. (1401) "بررسی عددی و تجربی طول تغییرشکل در فرایند شکل­دهی غلتکی انعطاف­پذیر".  مکانیک سازه­ها و شاره­؛ 11(6): 1-14.
[2] پناهی­زاده ولی­اله، دادگراصل یعقوب، افشین سولماز. (1400) "تحیل عددی و تجربی عیب برگشت فنری در فرایند شکل­دهی
غلتکی انعطاف­پذیر با استفاده از معیارهای تسلیم ناهمسانگرد".مکانیک سازه­ها و شاره­ها­؛ 11(4): 93-105.
[3] حاجی احمدی سعید، مسلمی نائینی حسن، طالبی قادیکلایی حسین، صفدریان رسول، زین­العابدین بیگی علی. (1402) "مطالعه برگشت فنری پروفیل­های سوراخدار در فرایند شکل­دهی غلتکی". کارآفن.
[4] دیلمی عضدی حامد، بادپروا حسن، زین­العابدین بیگی علی. (1401) "بهینه­سازی ورق دولایه AA3105-St12در فرایند شکل­دهی تدریجی با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک چند جهته ". مهندسی مکانیک مدرس؛ 22(2): 121-132.
[5] Dadgar Asl Y, Woo Y, Kim Y, Moon YH (2020) Non-sorting multi-objective optimization of flexible roll forming using artificial neural networks. The Int. J. Adv. Manufac. Tech. 107:2875-2888.
[6] شمشیری مهدی، پناهی­زاده ولی­اله، دادگراصل یعقوب. (1401) " بررسی عددی و تجربی اثر گرمای موضعی روی کاهش عیب برگشت‌فنری در فرایند شکل‌دهی غلتکی انعطاف‌پذیر ".مهندسی ساخت و تولید ایران ؛ 9(2): 35-44.
[7] Park JC, Yang DY, Cha M, Kim D, Nam JB, (2014) Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross-sections. Int. J. Machine Tools and Manufacture 86: 68-80.
[8]  Moneke M, Groche P (2021) The origin of end flare in roll formed profiles. Int. J. Material Forming 14(6): 1439-1461.
[9] دادگراصل یعقوب، شیخی محمدمراد، پورکمالی انارکی علی، پناهی­زاده ولی­اله، حسین­پور محمد. (1395) " تحلیل تجربی و عددی پدیده پارگی در فرایند شکل‌دهی غلتکی انعطاف‌پذیر با استفاده از معیارهای شکست نرم". مهندسی مکانیک مدرس؛ 16(5): 329-338.
[10] Liang C, Li S, Liang J, Li J (2021) Method for Controlling Edge Wave Defects of Parts during Roll Forming of High-Strength Steel. Metals, 12(1): 53-65.
[11] Su C, Liu J, Zhao Z, Lou S, Wang R, Yang L, (2020) Research on roll forming process and springback based on five-boundary condition forming angle distribution function. J. Mech. Sci. Tech. 34: 5193-5204.
[12] Safdarian R, M. Naeini H (2015) The effects of forming parameters on the cold roll forming of channel section. Thin-Walled Structures 92: 130-136.
[13] Kim N, Kang B, Lee S (2003) Prediction and design of edge shape of initial strip for thick tube roll forming using finite element method. J. Materials Processing Technology 142(2): 479-486.
[14] Larranaga J, Galdos L, Garcia C, Ortubay R, Arrizabalaga G (2008) Flexible roll forming process reliability and optimisation methods. Int J M :688-689.
[15] Bhattacharyya D, Smith P (1984) The development of longitudinal strain in cold roll forming and its influence on product straightness. Advanced Technology of Plasticity 1:422-427.
[16] Groche P, Beiter P, Henkelmann M (2008) Prediction and inline compensation of springback in roll forming of high and ultra-high strength steels. Production Engineering 2: 401-407.
[17] Jiao J, Rolfe B, Mendiguren J, Weiss M (2015) An analytical approach to predict web-warping and longitudinal strain in flexible roll formed sections of variable width. Int. J. Mech. Sci. 90: 228-238.
[18] Zhao W, Yan Y, Wang HB, Gao JF. Finite element analysis and fracture forecast of U channel flexible roll forming (2013) Advanced Materials Research 6(83): 604-607.
[19] Dadgar Asl Y, Sheikhi M, Pourkamali Anaraki A, Panahizadeh R V, Hoseinpour Gollo M (2017) Fracture analysis on flexible roll forming process of anisotropic Al6061 using ductile fracture criteria and FLD. The Int. J. Adv. Manufac. Tech. 91: 1481-1492.
[20] Kasaei MM et al. (2014) Flange wrinkling in flexible roll forming process. Procedia Engineering 31: 245-250.
[21] Sheu JJ, Liang CF, Yu CH, Hsu,WC, Lee PK (2018) Flexible roll forming of U-section product with curved bending profile using advanced high strength steel. Procedia Manufacturing 15: 782-787.
[22] Lindgren M, Ingmarsson LO (2009) 3D Roll-forming of Hat-profile with Variable Depth and Width. in Rollform09 1st International congress on roll forming, Bilbao, Spain, 14-15 October.
[23] Gulceken E, Abeé A, Sedlmaier A, Livatyali H (2007) Finite element simulation of flexible roll forming: A case study on variable width U channel. in 4th International Conference and Exhibition on Desing and Production of Machines and Dies/MoldS 21-23.
[24] Ona H, Sho R, Nagamachi T, Hoshi K (2010) Development of flexible cold roll forming machine controlled by PLC. Steel research international81(9): 182-185.
[25]Woo YY, Oh IY, Hwang TW, Moon YH (2020) Analysis of shape defects during flexible roll forming of steel/aluminum double-layered blanks. Int. J. Mat. Form. 13: 861-872.
[26]   Ona H, Shou I, Hoshi K (2012) On strain distributions in the formation of flexible channel section development of flexible cold roll forming machine. Advanced Materials Research 576: 137-140.
[27]   Sajjad M, Murugesan M, Jung DW (2020) Longitudinal bow estimation of U-shape profile in cold roll formed for commercial aluminum alloys. Int. J. Mech. Eng. Robot. Res 9:1097-1103.
[28]   Kim JH, Woo YY, Hwang TW, Han SW, Moon YH (2016) Effect of loading pattern on longitudinal bowing in flexible roll forming. J. Mech. Sci. Tech. 30: 5633-563