Optimization of Shear Strength of 420 Stainless Steel Brazing Joints Using BNi-2 by Response Surface Methodology

Authors

1 Department of Mechanical Engineering, Faculty of Aerospace Engineering, Shahid Sattari Aeronautical University, Tehran, Iran

2 Assisstant Professor, Department of Mechanical Engineering, Andimeshk Branch, Islamic Azad University, Andimeshk, Iran.

10.22044/jsfm.2024.13615.3794

Abstract

In this research, the parameters of brazing temperature, time, and joint seam have been optimized in brazing joints of 420 stainless steel with BNi-2 filler metal on the shear strength of lap joint samples using response surface methodology. The parameters of brazing temperature, time, and joint seam were determined by the design of the experiment using the Benken box method. The thickness of BNi-2 filler metal was considered to be 0.04, 0.07, and 0.1 mm in this research. After preparing the samples, they were placed in a vacuum furnace at temperatures of 1000°C, 1070°C, and 1140°C for 10, 30, and 50 minutes. The mechanical tensile test was performed to determine the shear strength. It was observed that increasing the joint seam from 0.04 to 0.1 mm caused a 14% decrease in shear strength. Also, increasing the brazing temperature from 1000°C to 1140°C has increased the shear strength by 21%, and increasing the brazing time from 10 to 50 minutes has increased the shear strength by 27%. In the end, it was optimized that the maximum shear strength is 164.429 MPa in the joint seam of 0.04 mm, the temperature is 1109.84 °C and the time is 46.58 minutes.

Keywords

Main Subjects


[1] محمود شاکری و ابوالفضل درویزه (1376) مکانیک ضربه، جلد اول. انتشارات دانشگاه گیلان.
[2] Zamani P, Farhangdoost K (2020) On the Influence of riveting process parameters on fatigue life of riveted lap joint. J. Appl. Comput. Mech. 6(2):248-58.
[3] Kemmenoe DJ, Theisen EA, Baker SP (2022) Strength of 444 stainless steel single-lap joints brazed with Ni-based metallic glass foils for corrosive environments. Metall. Mater. Trans. A 53(4):1407-18.
[4] Haran-Nogueira A, Kasaei MM, Akhavan-Safar A, Carbas RJ, Marques EA, da Silva LF (2023) Failure analysis of hybrid bonded-hole hemmed joints for dissimilar materials. Thin-Walled Struct. 189:110907.
[5] Chaturvedi M (2020) Welding and joining of aerospace materials. Woodhead publishing.
[6] Minea AA (2016) Book Review: Introduction to Brazing Technology. The Annals of" Dunarea de Jos" University of Galati. Fascicle XII: Welding Equipment and Technology 27:5.
[7] Way M, Willingham J, Goodall R (2020) Brazing filler metals. Int. Mater. Rev. 65(5):257-285.
 [8] Klotz UE, Liu C, Khalid FA, Elsener HR (2008) Influence of brazing parameters and alloy composition on interface morphology of brazed diamond. Mater. Sci. Eng. 495(1-2): 265-270.
 [9] Kamal A, Shukla AK, Shinde VM, Rajasekhar BV (2023) Microstructure and mechanical properties of C/SiC-niobium alloy (C103) joint brazed with TiCuAg alloy for aerospace applications. Ceram. Int.
 [10] Hongjie H, Guangmin Sh, Mingcan L, and Yingjun J (2018) Dynamic behaviors of 0Cr18Ni0Ti temperatures stainless steel welded joints at elevated and high strain rates. RARE METAL. MAT. ENG. 47(8): 2290-2297.
 [11] Davoodi Jamaloei A, Khorram A, Jafari A (2017) Characterization of microstructure and mechanical properties of dissimilar TLP bonding between IN718/IN600 with BNi-2 interlayer. J. Manuf. Process. 29: 447–457.
 [12] رضا سلطانی طاشی، سید علی اصغر اکبری موسوی (1389) شکست پذیری اتصال غیرمشابه لحیم کاری سخت تحت خلاء Ti-6Al-4V به فولاد زنگ‌نزن 316L با استفاده از فلز پرکننده AgCuZn. یازدهمین کنفرانس ملی جوش و بازرسی، تهران.
[13] Li Y, Feng J, Peng H (2009) Mechanical response of the TiAl/steel brazed joint under impact load. J Mater Sci 44: 3077–3081.
[14] Yaning L, Xinting K, Jian W, Huiping T (2018) Bonding Characterization Between 316L and Porous Stainless Steel Pipes by Vacuum Brazing. RARE METAL. MAT. ENG. 47(2): 0474-0478.
[15] Sudmeyer I, Hettesheimer T, Rohde M (2010) On the shear strength of laser brazed SiC–steel joints: Effects of braze metal fillers and surface patterning. Ceram. Int. 36(3): 1083–1090.
[16] پژمان صارمی، مسعود کثیری (1395) بررسی شرایط بهینه لحیم کاری غیرهمجنس تیتانیوم خالص تجاری به فولاد زنگ‌نزن 304 کم کربن با استفاده از پرکننده پایه نقره BAg-8. بیست و هشتمین نشریه مهندسی متالوژی و مواد.
[17] Dong k, Kong J (2019) A high-strength vacuum-brazed TiAl/Ni joint at room temperature and high temperature with an amorphous foil Zr-Al-Ni-Co filler metal. J. Manuf. Process. 44: 389–396.
[18] Du Y, Zhang J, Li J, Wang F, Ding Y, Xiong J, Guo W (2023) Microstructure evolution and mechanical properties of Ti2AlNb/TC17 joints brazed with Ti–Zr–Cu–Ni filler metal. J. Vac. 215: 112365.
[19] American Welding Society: AWS C3.2 Standard Method for Evaluating the Strength of Brazed Joints, American Welding Society, Miami, FL, 2019, pp. 1–17.
[20] Montgomery DC (2017) Design and analysis of experiments. John wiley & sons.
[21] Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S (2000) Design of experiments. Principles and Applications, Learn ways AB, Stockholm.
[22] Li Y, Feng J, Peng H, Hua Z (2009) Mechanical response of the TiAl/steel brazed joint under impact load. J. Mater. Sci. 44:3077-81.
[23] Lugscheider E, Krappitz H (1986) The influence of brazing conditions on the impact strength of high-temperature brazed joints. Weld. J. 65(10): 261.
[24] Cai YS, Liu RC, Zhu ZW, Cui YY, Yang R (2017) Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal. Intermetallics 91:35-44.
[25] Zaharinie T, Yusof F, Hamdi M, Ariga T, Moshwan R (2014) Effect of brazing temperature on the shear strength of Inconel 600 joint. Int. J. Adv. Manuf. Technol. 73: 1133-40.
[26] Lee YW, Kim JH, Song YS, Seok CS (2007) Mechanical strength and microstructural characterization of SUS304 brazed joints with BNi-2 filler metal: influence of brazing temperature and time. Solid State Phenomena 124: 1673-6.
[27] Kawakatsu I, Osawa T, Saito H (1979) Brazed joint strength of stainless steel with nickel base filler metals. J. JPN. I. MET. MATER. 43(11): 1001-7.
 
[28] Fazeli I, Emami MR, Rashidi A (2021) Investigation and optimization of the behavior of heat transfer and flow of MWCNT-CuO hybrid nanofluid in a brazed plate heat exchanger using response surface methodology. International Communications in Heat and Mass Transfer 122:105175.
[29] سید عمادالدین حسینی و مصطفی امیرجان (1398) طراحی، تحلیل و مقایسه آلیاژ بریزینگ پایه نیکل عاری از بور، هشتمین کنفرانس بین المللی مواد و متالوژی.