Comparative investigation of nanofluid heat transfer in vertical annular channel with cosine heat flux by experimental and numerical methods

Authors

1 MS. Nuc. Eng., Shahid Beheshti University, Tehran, Iran

2 Prof., Nuc. Eng., Shahid Beheshti University., Tehran, Iran

3 Assist. Prof., Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Tehran

10.22044/jsfm.2023.13065.3736

Abstract

One method to improve heat convection is to increase the heat transfer coefficient of the working fluid. Adding metal or non-metal nanoparticles into the base fluid, known as nanofluid, is a technique to enhance the heat transfer coefficient. Research in the field of nanofluids has grown significantly in the last two decades. In this study, the effects of a homogenous combination of Al2O3 and TiO2 nanoparticles with deionized water are investigated. The thermohydraulic performance of the nanofluid inside the vertical channel is analyzed by experimental and numerical methods for turbulent and laminar flow. The turbulence model utilized in computational fluid dynamics is the k-ε model. The heating rod in the test section produces 1 kW cosine heat flux. The results show that increasing the concentration of nanoparticles significantly reduces the maximum temperature of the rod. The use of 1% homogeneous nanofluid reduces the maximum temperature by 20% at the Reynolds of 950 and 9.5% at the Reynolds of 4200 compared to pure water. Also, the heat transfer coefficient increases with the addition of nanoparticles. The difference between the results obtained by the k-ε turbulence model and the experimental method shows a difference of 10% to 13%. This research shows that the combined nanofluid with suitable thermal performance can be one of the working fluids in future thermal cycles.

Keywords

Main Subjects


[1]  Agency, I.E., World Energy Outlook. )2021(: www.iea.org.
[2]  Choi, S.U. and J.A. Eastman (1995) Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab.(ANL), Argonne, IL (United States).
[3]  Wang, J., et al.(2021) Investigation of Heat Transfer Characteristics of Al2O3-Water Nanofluids in an Electric Heater. 42(19-20): p. 1765-1774.
[4]  He, Y., et al. (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. 50(11-12): p. 2272-2281.
[5]  Duangthongsuk, W., S.J.I.J.o.H (2009) Wongwises, and M. Transfer, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. 52(7-8): p. 2059-2067.
[6]  Abbassi, Y., et al. (2014) Experimental investigation of TiO2/Water nanofluid effects on heat transfer characteristics of a vertical annulus with non-uniform heat flux in non-radiation environment. 69: p. 7-13.
[7]  Alklaibi, A., L.S. Sundar, and K.V.C.J.I.J.o.T.S. Mouli (2022) Experimental investigation on the performance of hybrid Fe3O4 coated MWCNT/Water nanofluid as a coolant of a Plate heat exchanger. 171: p. 107249.
[8]  Kanti, P.K., et al. (2021) Experimental investigation on thermo-hydraulic performance of water-based fly ash–Cu hybrid nanofluid flow in a pipe at various inlet fluid temperatures. 124: p. 105238.
[9]  Moraveji, M.K., et al. (2012) Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. 39(7): p. 995-999.
[10] Ebrahimnia-Bajestan, E., et al. (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. 54(19-20): p. 4376-4388.
 [11] Mousavizadeh, S.M., et al. (2015) Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling. 47(7): p. 814-826.
[12] Aly, W.I.J.E.C. and Management (2014) Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. 79: p. 304-316.
]۱۳[  رشید ج و طالبی م (1391) بررسی آزمایشگاهی اثر دمای سیال ورودی بر ضریب انتقال حرارت جابجایی نانوسیال اکسید آلومینیوم در یک لوله عمودی باشار غیر یکنواخت کسینوسی, اولین کنفرانس بین المللی نفت، گاز، پتروشیمی و نیروگاهی.
[۱۴]  عباسی ی، طالبی م و شیرانی ا (1391) بررسی تغییرات ضریب انتقال حرارت خنک کننده نانوسیال آبی اکسید تیتانیوم در راکتورهای هسته ای, کنفرانس هسته ای ایران.
 
[15]   F. A. Morrison (2021) Uncertainty Analysis for Engineers and Scientists: A Practical Guide. Cambridge University Press.