Numerical and Experimental Analysis of the Effect of Material, Diameter and Number of wires as the Reinforcements of the Foam Core in the Bending Strength of Sandwich Panels

Authors

1 MSc. Student, Mech. Eng., Malek Ashtar University, Tehran, Iran

2 Prof., Mech. Eng., Malek Ashtar University, Tehran, Iran

3 Assoc. Prof., Mech. Eng., Malek Ashtar University, Tehran, Iran

10.22044/jsfm.2023.13224.3750

Abstract

In this research, the influence of the parameters of metallic wires in the foam cores of sandwich panels as a reinforcement to improve the bending properties of sandwich panels has been investigated. In this regard, the three parameters including the number of wires (on a scale of 1, 2, and 3 wires), wire material (aluminum, iron, and steel) and their diameter (0.75, 1, and 1.5 mm) as the effective input parameters and specific bending strength and modulus of the structure have been selected as the output parameters of the design of experiment. In order to evaluate the parameters after validating the numerical model using the built prototype, an experiment has been designed using the Mini Tab software (Taguchi method) and simulation of the proposed tests has been carried out using the Abaqus software.The results showed that the optimal sample with priority of strength to weight includes three steel wires on each side, with the diameter of one millimeter. Also, with the increase in the number and diameter of the wires, the strength has increased, but this relationship is not always correct when assessing the strength to the weight of the sample. Increasing the mechanical properties of the wire increases the overall strength of the structure, so that the bending strength of the sandwich panel reinforced with three steel wires rises by about 43%, the bending modulus by about 80%, the specific strength by weight by 21%, and the special bending modulus by about 54%.

Keywords

Main Subjects


[1] Kausar, A., Ahmad, I., Rakha, S. A., Eisa, M. H., & Diallo, A. (2023). State-Of-The-Art of Sandwich Composite Structures: Manufacturing—to—High Performance Appl.. J. of Compo. Sci., 7(3), 102.
[2] Beral, B. (2007). Airbus structure and technology–next steps and vision. In Proceedings of 16th international conference on composite materials. Kyoto.
[3] Sharma, S. C., Murthy, H. N., & Krishna, M. (2004). Interfacial studies in fatigue behavior of polyurethane sandwich structures. J. Reinfo. plas. compo., 23(8), 893-903.
[4] Mesto, T., Sleiman, M., Khalil, K., Alfayad, S., & Jacquemin, F. (2023). Analyzing sandwich panel with new proposed core for bending and compression resistance. Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Applic., 237(2), 367-378.
[5] Norouzi, H., & Mahmoodi, M. (2022). Experimental and optimization study of compression behavior of sandwich panels with new symmetric lattice cores. Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater.: Des. Applic., 236(3), 548-566.
[6] Tekalur, S. A., Bogdanovich, A. E., & Shukla, A. (2009). Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Composites Science and Technology, 69(6), 736-753.
[7] Santhanakrishnan, R., Samlal, S., Joseph Stanley, A., & Jayalatha, J. (2018). Impact study on sandwich panels with and without stitching. Advanced Composite Materials, 27(2), 163-182.
[8] Ramakrishnan, K. R., Guérard, S., Zhang, Z., Shankar, K., & Viot, P. (2021). Numerical modelling of foam-core sandwich panels with nano-reinforced composite facesheets. J. Sandwich Struct. Mater., 23(4), 1166-1191.
[9] Javid, M., & Biglari, H. (2020). A multi-scale finite element approach to mechanical performance of polyurethane/CNT nanocomposite foam. Materials Today Communications, 24, 101081.
[10] Ghalami-Choobar, M., & Sadighi, M. (2014). Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core. Aerospace Science and Technology, 32(1), 142-152.
[11Davar, A., Azarafza, R., & Faraji Shoaa, J. (2020). Experimental and numerical analysis of low-velocity impact on composite sandwich panels with grid stiffened core. J. Sci. Tech. Compo., 6(4), 615-626.
[12] Wang, C., Ramakrishnan, K. R., Shankar, K., Morozov, E., Wang, H., & Fien, A. (2021). Homogenized shell element-based modeling of low-velocity impact response of stainless-steel wire mesh. Mechanics of Advanced Materials and Structures, 28(18), 1932-1947.
[13] Wan, Y., Diao, C., Yang, B., Zhang, L., & Chen, S. (2018). GF/epoxy laminates embedded with wire nets: A way to improve the low-velocity impact resistance and energy absorption ability. Composite Structures, 202, 818-835.
[14] Mohammadkhani, P., Jalali, S. S., & Safarabadi, M. (2021). Experimental and numerical investigation of Low-Velocity impact on steel wire reinforced foam Core/Composite skin sandwich panels. Composite Structures, 256, 112992.
[15] Formisano, A., Viscusi, A., Durante, M., Carrino, L., De Fazio, D., & Langella, A. (2020). Experimental investigations on bending collapse modes of innovative sandwich panels with metallic foam core. Procedia Manufacturing, 47, 749-755.
[16] Najafi, M., & Eslami-Farsani, R. (2020). Introducing novel sandwich panels based on of cork/polyurethane foam hybrid core and composite grid structure for marine applications. J. Sci. Tech. Compo., 7(3), 1064-1075.
[17] George, T., Deshpande, V. S., Sharp, K., & Wadley, H. N. (2014). Hybrid core carbon fiber composite sandwich panels: Fabrication and mechanical response. Composite structures, 108, 696-710.
[18] Uzay, Ç., & Geren, N. (2020). Effect of stainless-steel wire mesh embedded into fibre-reinforced polymer facings on flexural characteristics of sandwich structures. J. Reinfo. Plast. Compo., 39(15-16), 613-633.
[19] Maher, R., Khalili, S. M. R. K., & Eslami-Farsani, R. (2021). The effect of Shape memory wire on the ballistic behavior of smart corrugated core sandwich panels. J. Sci. Tech. Compos., 8(2), 1612-1627.
[20] Durante, M., Boccarusso, L., Carrino, L., Formisano, A., & Viscusi, A. (2022). Mechanical Behavior of Innovative Reinforced Aluminum Foam Panels. Key Engineering Materials, 926, 1713-1718.
[21] Ji, G., Ouyang, Z., & Li, G. (2013). Debonding and impact tolerant sandwich panel with hybrid foam core. Composite structures, 103, 143-150.
 
[22] Ramakrishnan, K. R., Shankar, K., Viot, P., & Guerard, S. (2012). A comparative study of the impact properties of sandwich materials with different cores. In EPJ Web of Conferences (Vol. 26, p. 01031).
[23] Lee, J., & Lee, S. H. (2004). Flexural–torsional behavior of thin-walled composite beams. Thin-walled structures, 42(9), 1293-1305.
[24] Petras, A., & Sutcliffe, M. P. F. (1999). Failure mode maps for honeycomb sandwich panels. Composite structures, 44(4), 237-252.
[25] Hamzeloo, S. R., Refahi Oskouei, A., & Zakizadeh, A. M. (2020). Applying acoustic emission to investigate failure mechanisms on bending of polymer-based composite sandwich panels. J. Sci. Tech. Compos., 7(3), 1029-1039.
[26] Carlsson, L. A., Kardomateas, G. A., Carlsson, L. A., & Kardomateas, G. A. (2011). Analysis of debond fracture specimens. Structural and Failure Mechanics of Sandwich Composites, 263-293.
[27] ASTM Standard C393, (2000), Standard Test Method for Flexural Properties of Sandwich Constructions, ASTM International, West Conshohocken, PA, USA, 2000.