Iterative Learning Observer-based Sliding Mode Fault Tolerant Control of a Rigid-Flexible System with External Disturbances

Authors

Aerospace research institute (Ministry of science, research and technology)

10.22044/jsfm.2023.12851.3732

Abstract

The paper discusses the design of an observer-based fault-tolerant control algorithm and active vibration control for attitude stailization of a flexible spacecraft (as a rigid-flexible system) subject to external disturbances. An iterative learning observer has been developed in order to estimate the torque deviation caused by actuator faults. One of the main features of the proposed observer is the consideration of external disturbances in its structure. Next, a fault-tolerant sliding mode control (SMC) law based on a proportional-integral-derivative (PID) structure with a time-varying switching gain is proposed in order to generate control signals with ideal performance. To minimize residual vibrations during and after the maneuver, the strain rate feedback (SRF) control algorithm is also activated simultaneously with fault-tolerant control. Using Lyapunov theory, the proposed control strategies guarantee global stability for the closed loop system. Numerical simulations as a comparative study have been used to demonstrate the effectiveness of the developed system compared to conventional algorithms, such as integral sliding mode control, when handling actuator failures, external disturbances, and flexible body excitations in rigid-flexible dynamic systems.

Keywords

Main Subjects


[1]     Wang Z. and Wu Z. (2015) Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dynam. 81(1): 257-264.
[2]     Liu C., Vukovich G., Sun Z., and Shi K. (2018) Observer-based fault-tolerant attitude control for spacecraft with input delay. J. Guid. Control Dynam. 41(9): 2041-2053.
[3]     Li H. and Lin X. (2022) Robust finite-time fault-tolerant control for dynamic positioning of ships via nonsingular fast integral terminal sliding mode control. Appl. Ocean Res. 122: 103126.
[4]     Van M., Mavrovouniotis M., and Ge S. S. (2018) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE T. Syst. Man. Cyb.: Systems 49(7): 1448-1458.
[5]     Khoshnood A. M., Sheibani A., Roshanian J., and Moradi-Maryamnegari H. (2016) L1 adaptive controller design of a space system considering structural flexibility. J. of Solid and Fluid Mech. 6(2): 17-27.
[6]     Ma C., He X., Xie B., Sun W., Zhao D., and Liao W. (2022) Backstepping sliding mode fault-tolerant control for the wind turbine system with disturbance observer. P. I. Mech. Eng. 236(9): 1667-1678.
[7]     Zhang X. and Huang W. (2022) Adaptive sliding mode fault tolerant control for interval Type-2 fuzzy singular fractional-order systems. J. Vib. Control 28(3-4): 465-475.
[8]     Chai R., Tsourdos A., Gao H., Xia Y., and Chai S. (2021) Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances. IEEE T. Ind. Electron 69(4): 4022-4033.
[9]     Wu X., Luo S., Wei C., and Liao Y. (2021) Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults. Acta Astronaut. 178: 824-834.
[10]   Šabanovic A. (2011) Variable structure systems with sliding modes in motion control—A survey. IEEE T. Ind. Inform. 7(2): 212-223.
[11]   Yu X.-N. and Hao L.-Y. (2022) Integral sliding mode fault tolerant control for unmanned surface vessels with quantization: Less iterations. Ocean Eng. 260: 111820.
[12]   Cong B., Chen Z., and Liu X. (2014) On adaptive sliding mode control without switching gain overestimation. Int. J. Robust Nonlin. 24(3): 515-531.
[13]   Liu C., Wen G., Zhao Z., and Sedaghati R. (2020) Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain. IEEE T. Cybernetics 51(5): 2339-2346.
[14]   Duc M. N., Trong T. N., and Xuan Y. S. (2015) The quadrotor MAV system using PID control. in 2015 IEEE Int. Conference on Mechatronics and Automation (ICMA): IEEE, 506-510.
[15]   Hu Q., Xiao B., and Friswell M. (2011) Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Control Theory A. 5(2): 271-278.
[16]   Yin S., Xiao B., Ding S. X., and Zhou D. (2016) A review on recent development of spacecraft attitude fault tolerant control system. IEEE T. Ind. Electron 63(5): 3311-3320.
[17]   Liang Y.-W., Xu S.-D., and Tsai C.-L. (2007) Study of VSC reliable designs with application to spacecraft attitude stabilization. IEEE T. Contr. Syst. T. 15(2): 332-338.
[18]   Shen Q., Wang D., Zhu S., and Poh E. K. (2014) Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE T. Contr. Syst. T. 23(3): 1131-1138.
[19]   Cassinis L. P. et al. (2023) Leveraging neural network uncertainty in adaptive unscented Kalman Filter for spacecraft pose estimation. Adv. Space Res. 71(12): 5061-5082.
[20]   Bernardi E. and Adam E. J. (2020) Observer-based fault detection and diagnosis strategy for industrial processes. J. Frankl. Inst. 357(14): 10054-10081.
[21]   He X., Wang Z., Liu Y., and Zhou D.-H. (2013) Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach. IEEE T. Ind. Inform. 9(3): 1670-1679.
[22]   Wu Q. and Saif M. (2006) Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer. in 2006 MER. Contr. Conf.: IEEE,  6 pp.
[23]   Wu Q. and Saif M. (2007) An overview of robust model-based fault diagnosis for satellite systems using sliding mode and learning approaches. in 2007 IEEE SysMan. Cybern.: IEEE,  3159-3164.
[24]   Koç M. A. (2022) A new expert system for active vibration control (AVC) for high-speed train moving on a flexible structure and PID optimization using MOGA and NSGA-II algorithms. J. Braz. Soc. Mech. Sci. 44(4): 151.
[25]   Nguyen V., Johnson J., and Melkote S. (2020) Active vibration suppression in robotic milling using optimal control. INT. J. Mach. Tool. Manu.  152: 103541.
[26]   Qiu Z.-c. and Wang T.-x. (2019) Fuzzy neural network vibration control on a piezoelectric flexible hinged plate using stereo vision detection. J. Intel. Mat. Syst. Str.: 1045389X18818766.
[27]   Richiedei D., Tamellin I., and Trevisani A. (2022) Pole-zero assignment by the receptance method: Multi-input active vibration control. Mech. Syst. Signal. PR. 172: 108976.
[28]   Feng H.-N., Zhang B.-L., Zhao Y.-D., Ma H., Su H., and Li J. (2022) Vibration control of network-based offshore structures subject to earthquakes. T. I. Meas. Control 44(4): 861-870.
[29]   Qiu Z.-c., Wang T.-x., and Zhang X.-m. (2021) Sliding mode predictive vibration control of a piezoelectric flexible plate. J. Intel. Mat. Syst. Str. 32(1): 65-81.
[30]   Lou J.-q., Wei Y.-d., Yang Y.-l., and Xie F.-r. (2015) Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator. Smart Mater. Struct. 24(3): 035007.
[31]   Azimi M. and Moradi S. (2021) Robust optimal solution for a smart rigid–flexible system control during multimode operational mission via actuators in combination. Multybody Syst. Dyn. 52(3): 313-337.
[32]   Ma G., Hu Q., and Liu Y. (2004) Active vibration control for flexible spacecraft during large angle maneuver using piezoelectric ceramic elements. in The 3nd International Symposium on Instrumentation Science and Technology,  1: Xi'an, China,  593-610.
[33]   Shin H.-C. and Choi S.-B. (2001) Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors. Mechatronics 11(6): 707-729.
 
[34]   Shahravi M. and Azimi M. (2016) A hybrid scheme of synthesized sliding mode/strain rate feedback control design for flexible spacecraft attitude maneuver using time scale decomposition. INT. J. Struct. Stab. DY. 16(02): 1450101.
[35]   Zhang C., Ma G., Sun Y., and Li C. (2019) Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation. ISA T. 89: 84-95.
[36]   Yan R. and Wu Z. (2019) Super-twisting disturbance observer-based finite-time attitude stabilization of flexible spacecraft subject to complex disturbances. J. Vib. Control 25(5): 1008-1018.
[37]   Cao T., Gong H., Cheng P., and Xue Y. (2022) A novel learning observer-based fault-tolerant attitude control for rigid spacecraft. Aerosp. Sci. Technol. 128: 107751.
[38]   Shahravi M. and Azimi M. (2015) A comparative study for collocated and non-collocated sensor/actuator placement in vibration control of a maneuvering flexible satellite. P. I. Mech. Eng. C-J Mec. 229(8): 1415-1424.
[39]   Sidi M. J., Spacecraft dynamics and control: a practical engineering approach. Cambridge university press, 1997.
[40]   Zhang L., Hua C., and Guan X. (2016) Distributed output feedback consensus tracking prescribed performance control for a class of non‐linear multi‐agent systems with unknown disturbances. IET Control Theory A. 10(8): 877-883.
[41]   Corless M. and Leitmann G. (1981) Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE T. Automat. Contr. 26(5): 1139-1144.
[42]   Hu Q. (2009) Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dynam. 55(4): 301-321.
[43]   Rahn C. D. and Rahn C., Mechatronic control of distributed noise and vibration. Springer, 2001.
[44]   Azimi M. and Sharifi G. (2018) A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism. Aerosp. Sci. Technol. 82: 140-148.
[45]   Wenjie D., Dayi W., and Chengrui L. (2017) Integral sliding mode fault‐tolerant control for spacecraft with uncertainties and saturation. Asian J. Control. 19(1): 372-381.