Numerical Analysis of Hot Deep Drawing Process of Thick Steel Sheet without Using Blank Holder with Tractrix and Pseudo Tractrix Dies

Authors

1 Faculty of Mechanics, Malek Ashtar University of Technology, Shahin Shahr, Iran

2 Ph.D. Student, Department of Mechanical Engineering., Isfahan University of Technology, Isfahan, Iran

3 Alumn, Department of Mechanics, Malek Ashtar University of Technology, Shahin Shahr, Iran

Abstract

Deep drawing is a process that is usually performed in cold conditions, but there are also cases of using this process in hot conditions to reduce the forming force. The use of a blank holder in the forming process leads to an increase in the forming force and changes the thickness of the sheet, especially in the hot state, due to the increase in friction. On the other hand, omition of blank holder will cause wrinkling of the sheet due to development of periferal stresses, and this problem is aggravated by increasing the depth of drawing. In this research, the finite element analysis for forming a hemispherical head from a high strength steel sheet in the hot deep drawing process without using a blank holder is studied. Simulations are done for two types of tractrix and pseudo tractrix dies and for sheets with different thicknesses and diameters, and the results are compared with each other. The results of the analyzes show that with the increase in the thickness and diameter of the sheet, the force required by the mandrel for forming increases. In general, less forming force is required in the tractrix die and at the same time it brings less thickness changes. Furthermore, the formation of hemispherical objects lacking cylindrical tiles in thicknesses higher than one centimeter will be healthy and free of wrinkles.

Keywords

Main Subjects


[1] Karima, M. M. N. (1980). A brief study of wrinkling in deep drawing. (PhD), McMaster Hamilton, Ontario, Canada.
[2] Al-Makky, M. M. (1980). The production of hollow-ware  by deep-drawing and bluge forming (PhD), Sheffield West Yorkshire, England.
[3] Yu, T., & Stronge, W. (1985). Wrinkling of a circular elastic plate stamped by a spherical punch. Int J Solid Struct, 21(10): 995-1003.
[4] Hutchinson, J. W., & Neale, K. W. (1985). Wrinkling of curved thin sheet metal. Paper presented at the Plastic instability.
[5] Breuer, U., Neitzel, M., Ketzer, V., & Reinicke, R. (1996). Deep drawing of fabric reinforced thermoplastics: Wrinkle formation and their reduction. Polymer Compos, 17(4): 643-647.
[6] Manish, k. (2002). Drawing of non circular cups through tractrix die. (MS), Indian Institute of technology Dehli, India.
[7] Chu, E., & Xu, Y. (2001). An elastoplastic analysis of flange wrinkling in deep drawing process. Int J Mech Sci, 43(6): 1421-1440.
[8] Gharib, H., Wifi, A., Younan, M., & Nassef, A. (2006). An analytical incremental model for the analysis of the cup drawing. J. Achiev. Mater, 17(1-2): 245-248.
[9] Manji, J. (1994). Die Lubricants Forging Spring, 39-44.
[10] Dhaiban, A. A., Soliman, M.-E. S., & El-Sebaie, M. (2014). Finite element modeling and experimental results of brass elliptic cups using a new deep drawing process through conical dies. J Mater Process Tech, 214(4): 828-838.
[11] Narayanasamy, R., & Loganathan, C. (2008). Study on wrinkling limit of interstitial free steel sheets of different thickness when drawn through Conical and Tractrix dies. Mater Des, 29(7): 1401-1411.
[12] Agrawal, A., Reddy, N. V., & Dixit, P. (2007). Determination of optimum process parameters for wrinkle free products in deep drawing process. J Mater Process Tech, 191(1-3), 51-54.
]13[ صدیقی, م.، و راستی, م. (1388). مقایسه تغییرات نیرو و ضخامت درفرایند کشش عمیق ورق‌های ضخیم درقالب‌های تخت، مخروطی و تراکتریکس. نشریه مهندسی مکانیک امیرکبیر، 41(1): 65-59.
[14] Morovvati, M., Mollaei-Dariani, B., & Asadian-Ardakani, M. (2010). A theoretical, numerical, and experimental investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing. J Mater Process Tech, 210(13): 1738-1747.
[15] Saxena, R. K., & Dixit, P. (2010). Prediction of flange wrinkling in deep drawing process using bifurcation criterion. J Manuf Process, 12(1): 19-29.
[16] Agrawal, A., Reddy, N. V., & Dixit, P. (2011). Determination of Minimum Blankholding Pressure for Producing Wrinkle Free Products in Multistage Deep Drawing. International Manufacturing Science and Engineering Conf.
[17] Kadkhodayan, M., & Moayyedian, F. (2011). Analytical elastic–plastic study on flange wrinkling in deep drawing process. Scientia Iranica, 18(2): 250-260.
[18] Prakash, S., & Kumar, D. (2012). Investigation and analysis for the wrinkling behaviour of deep drawn die sheet metal component by using fast form. Proc. Natl. Conf. Trends Adv. Mech. Eng. m.
[19] Reddy, V., R., Reddy, J. T. A., & Reddy, G. C. M. (2013). Effect of Friction Factor on Wrinkling and Fracture Limits in Deep Drawing of Cylindrical Cup. Int J Eng Res Tech, 6(1): 75-86.
[20] Dhaiban, A. A., Soliman , M.-E. S., & El-Sebaie, M. G. (2014). A new elliptical cup deep drawing technique for better formability of commercial aluminum. ]nternational conference of The Industry-Academic Collaboration, ICA2014 Cario, Egypt.
 [21] Hassan, M., Hassab-Allah, I., Hezam, L., Mardi, N., & Hamdi, M. (2015). Deep Drawing of Asymmetric Cups through Conical Die without Blank Holder. Proceedings of the World Congress on Engineering.
[22] Liewald, M., Han, F., & Radonjic, R. (2015). New criterion for prediction of the wrinkle formation in deep drawing process. Key Engineering Materials.
[23] Saleh, A. H., & Ali, A. K. (2015). Development technique for deep drawing without blank holder to produce circular cup of brass alloy. Int J Eng Tech, 4(1): 187-195.
[24] Magrinho, J., Silva, C., Silva, M., & Martins, P. A. (2018). Formability limits by wrinkling in sheet metal forming. Proc IME J Mater Des Appl, 232(8): 681-692.
 [25] Saleh, A. H., Ameen, H. A., & abdel Radh, O. H. (2018). Development of reversed deep drawing without blank holder for producing brass elliptical cup. Int J Eng Tech,, 7(2): 578-583.
]26[ سیفی, ر.، و عباسی, ز. (1393). بررسی تجربی و عددی چین‌خوردگی فلنجی ورق‌ها در کشش عمیق دو فلزی. نشریه علوم کاربردی و محاسباتی در مکانیک، 25(2): 81-65.
[27] Béres, G., Lukács, Z., & Tisza, M. (2019). Study on the wrinkling behavior of cylindrical deep-drawn cups. AIP conf.
[28] Weiping, D., Qichao, W., & Xiaoming, W. (2018). Stress analysis of cylindrical parts during deep drawing based on Dynaform. MS&E, 423(1): 012166.
[29] Ashtiani H. R. R & Arjenki M. G. (2020) Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy. IJMF.
[30] Abdel-Magied, R. K., Elmashad, A. M., Elmetwally, H. T., El-Sheikh, M. N., Abd-Eltwab, A. A., & Saied, E. K. (2020). An Investigation into Deep Drawing Process without Blank Holder. IJAST, 29(3): 2230-2243.
[31] Schey, J. A. (1984). Tribology in Metalworking: Friction, Lubrication, and Wear. Journal of Applied Metalworking, 3(2): 173-173.
]32[ وحدتی، م.، رسولی، م. ع.، و گردویی، م. (2020). تحلیل تئوری و عددی فرآیند کشش عمیق داغ کلاهک ضخیم نیمکروی. مکانیک سازه ها و شاره ها، 10(2): 59-78.
[33] Lange, K. (1985). Handbook of Metal Forming.
[34] Liang, R., & Khan, A. S. (1999). A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast, 15(9): 963-980.
[35] Holmquist, T. J. (1987). Strength and Fracture Characteristics of HY-80, HY-100 and HY-130 Steels Subjected to Various Strains, Strain Rates, Temperatures, and Pressures. Defense Technical Information Center.
[36] Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics.
[37] Jeswiet, J., Geiger, M., Engel, U., Kleiner, M., Schikorra, M., Duflou, J., Bruschi, S. (2008). Metal forming progress since 2000. CIRP-JMST, 1(1): 2-17.
[38] Shaaban, A., & Elakkad, A. S. (2021). Numerical and experimental analysis of single-acting stroke deep drawing of symmetric low-depth products without blank holder. Ain Shams Engineering Journal, 12(3): 2907-2919.