Investigation of stress distribution in healthy and arthritic knee joints after registering 3D files on the radiographic images

Authors

1 Ph.D. Student, Mech. Eng., University of Birjand, Birjand, Iran

2 Assoc. Prof., Mech. Eng., University of Birjand, Birjand, Iran

3 Assist. Prof., Mech. Eng., University of Birjand, Birjand, Iran

Abstract

Arthritis of the knee is one of the leading health problems in people, and most knee surgeries have been for this reason. This disease occurs mostly in old age, spreads slowly, and affects the knee joint components. Since arthritis over time causes the destruction of the articular cartilage in the knee, therefore, the destruction of this joint is discussed and investigated according to the applied stresses. By entering CT scan and MRI images into Mimix software, 3D models of the knee are extracted and by using a dedicated software developed for the analysis of radiographic images based on the programming in the MATLAB GUI environment, the 3D CT scan files are matched to the radiographic images. The final 3D model has been created using Solidwork software, and by running numerical simulations in Abaqus software, the stresses on the cartilages have been calculated for healthy and arthritic knees. The results showed that the amount of stress in the middle side of the joint is always higher than on the lateral side, and this difference will be greater in the arthritic joint than in the healthy joint.

Keywords


[1] Zach L., Kunčická L., Růžička P. and Kocich R. (2014) Design, analysis and verification of a knee joint oncological prosthesis finite element model. Comput. Biol. Med. 54: 53-60.
[2] Arbabi V. (2016) Multi-physics computational models of articular cartilage for estimation of its mechanical and physical properties, PHD Thesis, Delft University of Technology.
[3] Marijnissen A. C., Vincken K. L., Vos P. A., Saris D., Viergever M., et al. (2008) Knee Images Digital Analysis (KIDA): a novel method to quantify individual radiographic features of knee. Osteoarthr. Cartil. 16(2): 234-243.
[4] Goulston L. M., Sanchez-Santos M. T., D'Angelo S., Leyland K. M., Hart D. J., et al. (2016) A comparison of radiographic anatomic axis knee alignment measurements and cross-sectional associations with knee osteoarthritis. Osteoarthr. Cartil. 24(4): 612-622.
[5] Glyn-Jones S., Palmer A. J. R., Agricola R., Price A. J., Vincent T. L., et al. (2015) Osteoarthritis. Lancet. 386(9991): 376-387.
[6] Sepehri B., Mohammadi Esfahani H. and Firouzi F. (2016) Modeling and Simulation of Mechanical Behavior in Knee Joint under Gait. Modares Mech. Eng. 16(8): 335-342.
[7] عبدالهی س. م.، ملکی ع. و جمشیدی ن. (2012) مروری بر برخی مطالعات مدل‌های Finite element زانو. پژوهش در علوم توانبخشی 8(3): 590-598.
[8] Cooper R. J., Wilcox R. K. and Jones A. C. (2019) Finite element models of the tibiofemoral joint: A review of validation approaches and modelling. Med. Eng. Phys. 74: 1-12.
[9] Ali A. A., Shalhoub S. S., Cyr A. J., Fitzpatrick C. K., Maletsky L. P., et al. (2016) Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. J. Biomech. 49(2): 302-309.
[10] Vidal A., Lesso R., Rodríguez R., García S. and Daza L. (2007) Analysis, simulation and prediction of contact stresses in articular cartilage of the knee joint. WIT Transactions on Biomedicine and Health, Modelling in Medicine and Biology VII, Brebbia CA (ed) 12: 55-64.
[11] Park S., Lee S., Yoon J. and Chae S.-W. (2019) Finite element analysis of knee and ankle joint during gait based on motion analysis. Med. Eng. Phys. 63: 33-41.
[12] Shu L., Yamamoto K., Yao J., Saraswat P., Liu Y., et al. (2018) A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J. Biomech. 77: 146-154.
[13] Ding K., Yang W., Wang H., Zhan S., Hu P., et al. (2021) Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint. Int. Orthop. 1-9.
[14] Esrafilian A., Stenroth L., Mononen M., Tanska P., Avela J., et al. (2020) EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci. Rep. 10(1): 1-16.
[15] Halonen K., Mononen M., Jurvelin J., Töyräs J., Salo J., et al. (2014) Deformation of articular cartilage during static loading of a knee joint–experimental and finite element analysis. J. Biomech. 47(10): 2467-2474.
[16] Klets O., Mononen M. E., Liukkonen M. K., Nevalainen M. T., Nieminen M. T., et al. (2018) Estimation of the Effect of Body Weight on the Development of Osteoarthritis Based on Cumulative Stresses in Cartilage: Data from the Osteoarthritis Initiative. Ann. Biomed. Eng. 46(2): 334-344.
[17] Thienkarochanakul K., Javadi A. A., Akrami M., Charnley J. R. and Benattayallah A. (2020) Stress Distribution of the Tibiofemoral Joint in a Healthy Versus Osteoarthritis Knee Model Using Image-Based Three-Dimensional Finite Element Analysis. J. Med. Biol. Eng. 40(3): 409-418.
[18] Wang Y., Fan Y. and Zhang M. (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med. Eng. Phys. 36(4): 439-447.
[19] Wesseling J., Boers M.,Viergever M. A., Hilberdink W. K., Lafeber F. P., et al. (2014) Cohort profile: cohort hip and cohort knee (CHECK) study. Int. J. Epidemiol. 45(1): 36-44.
[20] Van Jonbergen H.-P. W., Innocenti B., Gervasi G. L., Labey L. and Verdonschot N. (2012) Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study. J. Orthop. Surg. Res. 7(1): 1-9.
[21] Gokkus K., Atmaca H., Uğur L., Özkan A. and Aydin A. T. (2016) The relationship between medial meniscal subluxation and stress distribution pattern of the knee joint: Finite element analysis. J. Orthop. 21(1): 32-37.
[22] Zhu G.-D., Guo W.-S., Zhang Q.-D., Liu Z.-H. and Cheng L.-M. (2015) Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: the influence of tibial component coronal alignment. Chin. Med. J. 128(21): 2873.
[23] Sasatani K., Majima T., Murase K., Takeuchi N., Matsumoto T., et al. (2020) Three-dimensional finite analysis of the optimal alignment of the tibial implant in unicompartmental knee arthroplasty. Nippon Med. Sch. 87(2): 60-65.
[24] Akrami M., Qian Z., Zou Z., Howard D., Nester C. J., et al. (2018) Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions. Biomech Model Mechanobiol. 17(2): 559-576.
[25] Kang K.-T., Kim S.-H., Son J., Lee Y. H. and Chun H.-J. (2015) In vivo evaluation of the subject-specific finite element model for knee joint cartilage contact area. Int. J. Precis. Eng. Manuf. 16(6): 1171-1177.
[26] Freutel M., Schmidt H., Dürselen L., Ignatius A. and Galbusera F. (2014) Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29(4): 363-372.
[27] Räsänen L. P., Mononen M. E., Nieminen M. T., Lammentausta E., Jurvelin J. S., et al. (2013) Implementation of subject‐specific collagen architecture of cartilage into a 2D computational model of a knee joint—data from the osteoarthritis initiative (OAI). J. Orthop. Res. 31(1): 10-22.
[28] نیکبخت ه.، احمدی بروغنی س. و اربابی و. (2022) تحلیل اجزای محدود و مقایسه توزیع تنش در غضروف­ها و منیسک‌های دو نمونه‌ی مفصل زانوی سالم و پرانتزی. فصل­نامه علمی پژوهشی مهندسی پزشکی زیستی 16(2): 151-160.