Experimental study of solar collector with helical coil

Authors

1 Ferdowsi University

2 department of Mechanical Engineering/ College of Engineering/ Ferdowsi University of Mashhad

3 AhlAlbayt University, Karbala, Iraq

Abstract

The solar parabolic trough concentrator (PTC) is superior to all other solar collectors owing to its concentration ratio. Various methods are being employed to enhance the efficiency of the PTC system, the most common of which are enhancing the reflectivity of the collector surface, increasing the absorptive capacity of the absorber tube, using high thermal capacity fluid in the absorber tube, and using inserts in the flow of fluid in the absorber tube. In the present study, the parabolic trough is constructed of a mild steel sheet with a receiver made of copper positioned at the focal point, and water was used as the working fluid. Using a bare tube helical receiver with a 2-cm pitch and a black-coated helical receiver, we measured the temperature variations. The results showed that the maximum absorber temperature occurred on the 21st of June at 13.17 PM after maximum solar radiation, which was 148°C. The higher temperature at this time is due to higher instantaneous solar radiation. Also, the minimum collector receiver temperature recorded was on the 21st of December at 13.12 PM, after maximum solar radiation, which was 91°C.

Keywords

Main Subjects


[1] Maadi, S. R., Khatibi, M., Ebrahimnia-Bajestan, E. and Wood, D. (2019a) Coupled thermal-optical numerical modelin  g of PV/T module – Combining CFD approach and two-band radiation DO model. Energy Conversion and Management 198, 111781.
[2] Rashidi, S., Karimi, N., Mahian, O. and Abolfazli Esfahani, J. (2019) A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J. Therm Anal Calorim 135 (2), 1145-1159.
[3] Rashidi, S., Esfahani, J. A. and Hosseinirad, E. (2021) Assessment of solar chimney combined with phase change materials. J. Taiw Inst Chem Eng.
[4] Rashidi, S., Yang, L., Khoosh-Ahang, A., Jing, D. and Mahian, O. (2020) Entropy generation analysis of different solar thermal systems. Environmental Science and Pollution Research 27 (17), 20699-20724.
[5] Maadi, S. R., Khatibi, M., Ebrahimnia-Bajestan, E. and Wood, D. (2019c) A parametric study of a novel PV/T system model which includes the greenhouse effect.
]6[ زندوی, ر. و آقانجفی, س. (1397) بررسی چگونگی افزایش بازده گردآورنده خورشیدی با موقعیت جغرافیایی معین. در چهارمین کنفرانس سراسری دانش و فناوری مهندسی مکانیک و برق ایران.
[7] Benabderrahmane, A., Benazza, A., Aminallah, M. and Laouedj, S. (2016) Heat transfer behaviors in parabolic trough solar collector tube with compound technique. Int J. Sci Res Engng & Tech (IJSRET) 5 (11).
]8[ کریمی, س., ترابی, ا. و قاسمی, ب. (1399) بررسی و ارزیابی پتانسیل دریافت انرژی خورشیدی توسط دیش متمرکز کننده خورشیدی در ایران. در سومین کنفرانس ملی مهندسی مکانیک کاربردی.
[9] Kalogirou, S. A. (2004) Solar thermal collectors and applications. Progress in energy and combustion science 30 (3), 231-295.
[10] Qiu, Y., Li, M.-J., He, Y.-L. and Tao, W.-Q. (2017) Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Applied Thermal Engineering 115, 1255-1265.
[11] Wang, Z., Ni, J., Zhao, L., Deng, S. and Zhao, D. (2017) Simulation and optimization of parabolic trough receiver with non-uniform heat flux distribution: A review. Energy Procedia 142, 700-707.
[12] Maadi, S. R., Kolahan, A., Passandideh Fard, M. and Sardarabadi, M. (2017) Effects of nanofluids thermo-physical properties on the heat transfer and 1st law of thermodynamic in a serpentine PVT system. Proceedings of the 17th Fluid Dynamics Conference, Shahrood, Iran.
[13] Kolahan, A., Maadi, S., Passandideh Fard, M. and Sardarabadi, M. (2017) Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. In17th Conference On Fluid Dynamics, fd2017.
[14] Maadi, S. R., Kolahan, A., Passandideh-Fard, M., Sardarabadi, M. and Moloudi, R. (2017) Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Conversion and Management 150, 515-531.
]15[ پورموید, ع., ولی پور, م. ص., رحمتی, ر. و رحمانی, ر. (2015) بررسی عددی تاثیرات میدان مغناطیسی مماسی و ثابت بر جریان و انتقال حرارت از یک استوانه پوشیده شده با نوار متخلخل. مکانیک سازه ها و شاره ها 4 (4), 191-205.
]16[ سرداریان, م. و زحمتکش, ا. (1393) بهبود عملکرد گردآورنده های خورشیدی با بکارگیری محیط های متخلخل. در کنفرانس ملی بهینه سازی مصرف انرژی در علوم و مهندسی.
]17[ فرشاد, س. ع. و شیخ الاسلامی, م. (1399) بررسی عددی افزایش انتقال گرما نانوسیال در گردآورنده خورشیدی صفحه تخت با قراردادن نوار پیچشی چندکاناله در داخل لوله.
 
[18] Maadi, S. R., Sabzali, H., Kolahan, A. and Wood, D. (2020) Improving the performance of PV/T systems by using conical-leaf inserts in the coolant tubes. Solar Energy 212, 84-100.
[19] Rashidi, S., Hossein Kashefi, M. and Hormozi, F. (2018) Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges. Solar Energy 171, 929-952.
 [20] Sandeep, H. and Arunachala, U. (2017) Solar parabolic trough collectors: A review on heat transfer augmentation techniques. Renewable and sustainable energy reviews 69, 1218-1231.
[21] Ghadirijafarbeigloo, S., Zamzamian, A. and Yaghoubi, M. (2014) 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy procedia 49, 373-380.
 
[22] Natarajan, M., Sekhar, Y. R., Srinivas, T. and Gupta, P. (2014) Numerical simulation of heat transfer characteristics in the absorber tube of parabolic trough collector with internal flow obstructions. ARPN J. Eng Appl Sci 9 (5), 674-681.
[23] Huang, Z., Yu, G., Li, Z. and Tao, W. (2015) Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins. Energy Procedia 69, 1306-1316.
[24] Mohammad, I. L. (2012) Design and Development of Parabolic Solar Dish Water Heater. International J. Eng Res and Applic (IJERA) 2 (1), 822-830.
[25] Reddy, K. and Satyanarayana, G. (2008) Numerical study of porous finned receiver for solar parabolic trough concentrator. Engineering applications of computational fluid mechanics 2 (2), 172-184.
[26] Kazemian, A., Khatibi, M., Maadi, S. R. and Ma, T. (2021) Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Applied Energy, 116859.
[27] Riveros, H. and Oliva, A. (1986) Graphical analysis of sun concentrating collectors. Solar energy 36 (4), 313-322.
[28] Taleb, N. S. (2014) Robust Design of Thermal Solar Power Station Using System Advisor Model (SAM) Software as the First Pilot Project in Palestine.
[29] Howell, J. R., Bannerot, R. B. and Vliet, G. C. (1982) Solar-thermal energy systems: analysis and design. Mcgraw-Hill College.