Investigating the effects of geometric and environmental parameters on the governing equations of scanning earth horizon sensor and attitude determination error analysis

Authors

1 Solid Mechanics Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

2 Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran

Abstract

This study is performed to estimate the error of solving governing equations of a dual-cone scanning earth horizon sensor in presence of geometric and environmental parameters. In the process of extracting the equations for determining the sensor’s attitude, firstly, a simplified form of the earth as an sphere without atmosphere is used to model the earth and compared with the governed attitude of simulated satellite on a hypothetical orbit. But in reality, the geometric factor of the earth oblateness and environmental factors such as the sensor's field of view, the effect of the atmosphere and its reflection from the earth's surface cause errors in attitude determination of the satellite. Therefore, by assuming that the sensor is mounted on a satellite, simulating motion in a near earth orbit and modeling the sensor, the sensor’s inlet pulse and the amount of roll and pitch angles in different geometric and environmental conditions are calculated. Then, by comparing the calculated attitude with the simplified case, the effect of each in the occurrence of error are obtained. The simulation is based on a dual-cone scanning earth horizon sensor made in the Institute of Mechanics of Iranian Space Research Center on MicroMAS satellite. According to the simulation results, the atmosphere radiation and surface reflection, earth oblateness and sensor FOV in roll angle and in pitch angle, earth oblateness, atmosphere radiation and surface reflection and sensor FOV are the most effective factor in revealing error respectively.

Keywords

Main Subjects


[1]
Lo J (1986) Optimal estimation for the satellite attitude using star tracker measurements. Automatica,  22(4): 477-482.
[2]
Psiaki ML (1999) Autonomous Low-Earth-Orbit Determination from Magnetometer and Sun Sensor Data. J Guid Control Dyn, 22(2): 296-304.
[3]
Edelstein M, Knoll A (1965) Estimation of local vertical and orbital parameters for an earth satellite using horizon sensor measurement. AIAA, 3(2): 338-345.
[4]
Rycroft MJ, Stengel RF (1997) Attitude determination hardware. in Spacecraft dynamics and control, Cambridge, Cambridge university press.
[5]
Anderson R, Astheimer R, Beris J, Bohling R, Carroll F, Dodjen J, Earl M, Hieatt J, Knight S, Raskin W, Reid R, Thomas J. (1969) Spacecraft earth horizon sensors. NASA.
[6]
Wu J, Shan S (2019) Dot-Product Equality Constrained Attitude Determination from Two Vector Observations: Theory and Astronautical Applications. Aerospace, 6(9).  
]7[ رئیسی ب، غفرانی ف (2020) حسگر افق زمین تصویری با الگوریتمی مستقل از ارتفاع. دو فصلنامه علوم، فناوری و کاربردهای فضایی، 1(1).
[8]
Nastanson G, Glickman J (2000) A study of TRMM statics earth sensor preformance using on-orbit sensor data. AIAA: 350-360.
[9]
Herwaarden A (2001) Low-Cost Satellite Attitude Control Sensors Based on Integrated Infrared Detector Arrays. IEEE Trans Instrum Meas., 50(6): 1524-1529.
[10]
Herwaarden A, Herwaarden F, Molenaar S, Goudena E, Laros M, Sarro P, Schot C, Vlist WVD, Blarre L, Krebs J (2000) Design and fabrication of infrared detector arrays for satellite attitude control. Sens. Actuator A Phys., 83: 101-108.
[11]
Soto-Romero G, Bony F, Simonne J, Fourniols J (2001) Micro Infrared Earth Sensor project: an integrated IR camera for Earth remote sensing.  Int. Geosci. Remote Sens. Symp.
[12]
H. Van Rensburg, "An infrared earth horizon sensor for a LEO satellite," M.S., Electrical Engineering, Stellenbosch: University of Stellenbosch, 2008.
 
]13[ رئیسی  ب، غفرانی ف (2018) حسگر افق زمین تصویری مستقل از ارتفاع. شماره ثبت اختراع: 94050، ایران .
 
]14[ رئیسی ب، غفرانی ف، ابرازه ص، عرفان منش و، مهرجو ز (2018) استخراج الگوریتم تعیین وضعیت در برخی از مهم ترین انواع حسگرهای افق زمین و صحه سنجی آن به کمک شبیه سازی نرم افزاری. همایش ملی فناوری فضایی و کاربردهای آن، دانشگاه علم و صنعت, تهران.
[15]
Pisacane VL (2005) Spacecraft Attitude Determination and Control: Fundamentals of Space Systems. New York, Oxford university press.
[16]
Nguyen T, Cahoy K, Marinan A (2018) Attitude Determination for Small Satellites with Infrared Earth Horizon Sensors. J Spacecr Rockets, 55(6).
[17]
Bednarek TJ (1992) Dual Cone Scanning Earth Sensor ProcessingAlgorithms. Int. J. Satell. Commun. Netw., 1691: 181-191.
[18]
Desvignes F, Doitau F, Krebs J, Tissot M (1985) Optimal sensors for spacecraft attitude measurement with respect to the earth. Infrared Phys Technol, 590: 322-330.
[19]
Falbel G (2004) A Low Weight/Power/CostInfrared Earth Sensor. IEEE Aerosp. Conf. Proc.
[20]
Alex T, Shrivastava S (1989) On-Board Correction of Systematic Errors of Earth Sensors. IEEE Trans Aerosp Electron Syst., 25(3): 373-379.
[21]
Tekawy J, Wang P, Gray C (1996) Scanning horizon sensor attitude correction for Earth oblateness. AIAA Journal, 19: 706-708.
[22]
Ouyang G, Dong X, Li X (2016) Micro-Satellite Attitude Determination with Only A Single Horizon Sensor. Int. J. Mech. Mechatron. Eng.
[23]
Phenneger MC, Dehen J, Foch D, Harvie E and Virdy M (1989) The effects of seasonal and latitudinal earth infrared radiance variations on ERBS attitude control. Flight Mechanics/Estimation Theory Symposium, ASA, Goddard Space Flight Center, USA.
[24]
Ward K (1982) Modeling of the atmosphere for analysis of horizon sensor performance. Sen. Des. Using Comp. Tools, 327: 67-78.
[25]
Modenini D, Zannoni M (2019) A High Accuracy Horizon Sensor for Small Satellites. IEEE MetroAeroSpace, Torino.
[26]
Xianbin H, Jianhui Z, Zhijun T (2015) Research on the method of suppressing sun and moon’s interference on infrared conical earth sensor. J. Aerosp. Eng., 229(3): 399-406.
[27]
Gou B, Chenga Y, de Ruiterb A (2019) Altitude estimation for a celestial navigation system based on infrared Earth measurement. Acta Astronaut., 159: 105-111.
[28]
Li J, Gao C, Feng T, Jing W (2016) Error Correction of Infrared Earth Radiance for Autonomous Navigation. J. Navig., 67: 1427-1437.
[29]
Unhelkar V (2012) Satellite Attitude Estimation using Sun Sensors, Horizon Sensors and Gyros. Department of Aerospace Engineering Indian Institute of Technology, Bombay, 2012.
[30]
https://www.isrc.ac.ir/fa.
 
]31[ وصال م (2016) شبیه سازی حسگر افق زمین با در نظر گرفتن پارامترهای هندسی، محیطی و دینامیکی. دانشکده مهندسی مکانیک بخش مکانیک جامدات دانشگاه شیراز، شیراز.  
]32[ وصال م، رئیسی ب، محزون م، تقوایی س (2017) شبیه سازی دو مدل حسگر افق زمین با در نظر گرفتن پارامتر شدت تابش سطوح مختلف. بیست و هفتمین کنفرانس سالانه بین المللی انجمن مهندسان مکانیک ایران، تهران.
[33]
Wertz JR (1978) Spacecraft attitude determination and control. Dordrecht, Holland: D. Reidel Publishing Company.
[34]
L. Team (2010) http://lroc.sese.asu.edu. Arizona State University.
[35]
https://www.n2yo.com/