Thermo-Fluid Investigation on the Effect of Rotation on Film Cooling Performace at Pressure & Suction Side of the Leading-Edge of a Gas Turbine Blade

Authors

1 PhD./ Department of Mechanical Engineering, Iran University of Science and Technology

2 Prof. /Department of Mechanical Engineering, Iran University of Science and Technology, Tehran

3 MS. Student/ Department of Mechanical Engineering, IAU of Damavand, Iran

Abstract

Numerical study investigation has been performed to investigate the effects of the rotation on the film cooling effectiveness distributions of the leading-edge regions of a gas turbine blade. The Study was carried out at Re=100,000, Density Ratio of 1.5, 2 and 2.5, blowing ratio of M=1. The leading edge model has three rows of film cooling holes located along the stagnation line 0° and at ±30° respectively. The Realizable K-ε has been used for modeling of turbulence. After validation of numerical result of current study, five Rotaion number of 0.12, 0.24, 0.36, 0.48 and 0.6 have been selected and analyzed for investigation of relational influence on film cooling effectiveness. The results demonstrates at pressure side (PS) of the leading edge, the film cooling effectiveness increases and at suction side (SS) decreases with increasing of Rotation number. With growing of Rotaion number from 0.12 to 0.6, area-averaged film cooling effectiveness increases from 0.38 to 0.46 at pressure side (PS) and reduces monotonously about 26% at suction side (SS) of leading edge. Moreover increasing of Density Ratio from 0.15 to 0.25 has a increases of 45% on overall area-averaged film cooling effectiveness

Keywords


[1] Han JC, Dutta S, Ekkad S (2012) Gas turbine heat transfer and cooling technology. CRC Press Taylor & Francis Group, Florida.
[2] Mick WJ, Mayle RE (1988) Stagnation film  cooling and heat transfer, including its effect within the hole pattern, ASME J Turbomach 110(1): 66-72.
[3] Ekkad SV, Han JC, Du H (1998) Detailed film cooling measurement on a cylindrical leading edge model: effect of free-streamturbul ence and coolant density. ASME J Turbomach 120: 799-807.
[4] Rozati A, Tafti DK (2008) Large Eddy simulation of leading edge film cooling-Part II: Heat transfer and effect of blowing ratio. ASME J Turbomac 130(4): 041015-1-7.
[5] Rozati A, Tafti DK (2008) Effect of coolant blowing ratio on leading edge film cooling flow and heat transfer-LES investigation. Int J Heat Fluid Flow 29: 857-873.
[6] Ou S, Rivir RB (2001) Leading edge film cooling heat transfer with high free stream turbulence using a transient liquid crystal image method. Int J Heat Fluid Flow 22(6): 614-623.
[7] Mehendale AB, Han JC (1992) Influence of high mainstream turbulence on leading edge film  cooling heat transfer. ASME J Turbomach 114: 707-715.
[8] Mehendale AB, Han JC (1993) Reynolds number effect on leading edge film effectiveness and heat transfer coefficient. Int J Heat Mass Transfer 36: 3723-3730.
[9] Taslim M, Khanicheh A (2006) Experimental      and numerical study of impingement on an      airfoil leading edge with and without showerhead and gill film holes. ASME J Turbomach 128(2): 310-320.
[10] Cutbirth JM, Bogard DG (2003) Effects of coolant density ratio on film cooling performance on a vane. ASME Paper No. 2003 GT-38582.
[11] Karni J, Goldstein RJ (1990) Surface injection effect on mass transfer from a cylinder in crossflow: a simulation of film cooling in the leading edge region of a turbine blade. ASME J Turbomach 112: 418-427.
[12] Gao Z, Han J (2009) Influence of film-hole shape and angle on showerhead film cooling using PSP technique. ASME J Heat Transfer 131(6): 061701-061701-11.
[13] Li S, Yang S, Han J (2013) Effect of coolant density on leading edge showerhead film cooling using the pressure sensitive paint measurement technique. ASME J Turbomach 136(5): 051011-10.
[14] Reiss H, Bölcs A (2000) Experimental study of showerhead cooling on a cylinder comparing several configurations using cylindrical and shaped holes. ASME J Turbomach 122: 161-169.
[15] Tao Z, Yao Y (2020) Experimental and numerical study on film cooling effectiveness of an annular cascade endwall with different slot configuration. Int J Therm Sci 158: 106517
[16] Nathan M, Dyson T, Bogard D, Bradshaw S (2014) Adiabatic and overall effectiveness for the showerhead film cooling of  a turbine vane. ASME J Turbomach 136(3): 031005-1-9.
[17] Han JC, Chowdhury HK, Qureshi A (2017) Influence of turbine  blade leading edge shape on film cooling with cylindrical holes. Int J Heat Mass Tran 115: 895-908.
[18] Wang J, Lia L, Li J, Changh F (2020) Numerical investigation on flow and heat transfer characteristics of vortex cooling in actual film-cooled leading edge. Appl Therm Eng (2020):115942.
[19] Al-Zurfia N, Turanc A, Nasserc A (2019) A numerical study of anti-vortexfilm-coolingholes designs in a 1-1/2 turbine stage using LES. Propuls Power Res 8(4): 275-299
[20] حسینی س­م، زیرک س، رجبی زرگرآبادی م (1398) بررسی عددی تاثیر تزریق هوای خنک کننده نوسانی سینوسی بر خنک کاری لایه ای لبه حمله، سطح فشار و مکش یک پره توربین. نشریه علمی مکانیک سازه‌ها و شاره‌ها 247-227 :(2)9.
[21] حسینعلی‌پور س­م، شهبازیان ح، قبادی م، نوروزی م ص (1397) آنالیز سیالاتی-حرارتی اثرات دوران و بویانسی دورانی در خنک‌کاری داخلی پره‌های توربین گاز-مطالعه آزمایشگاهی. نشریه علمی مکانیک سازه‌ها و شاره‌ها 288-277 :(3)8.
[22] محمدی ا، صالحی س، رئیسی م (1399) کمی‌سازی عدم‌قطعیت جریان و انتقال حرارت مغشوش در خنک‌کاری لایه‌ای. نشریه علمی مکانیک سازه‌ها و شاره‌ها 192-177 :(2)10.
[23] York WD, Leylek JH (2003) Leading edge FilmCooling physics-Part III: Diffused hole effectiveness. ASME J Turbomach 125: 165-187.
[24] Beimaert-Chartrel G, Bogard DG (2012) CFD predictions of heat transfer coefficient augmentation on a simulated film cooled turbine blade leading edge. ASME Paper No. GT2012-70015.
[25] Rutledge JL, Polanka MD (2014) Computational fluid dynamics evaluations of unconventional film cooling scaling parameters on a simulated turbine blade leading edge. J Turbomach 136: 101006-15.