Investigating the Effect of Opening Aspect Ratio and Combustion Source Conditions on Behavior of Backdraft Phenomenon by Large Eddy Simulation

Authors

1 M.S.c. Mechanical Eng. Sharif University of Technology. Tehran. Iran.

2 Ph.D Student. Mechanical Eng. Sharif University of Technology. Tehran. Iran.

3 Associate Prof. Mechanical Eng. Sharif University of Technology. Tehran. Iran.

4 Prof. Mechanical Eng. Sharif University of Technology. Tehran. Iran.

Abstract

Backdraft is a special phenomenon of fire that occurs in a closed environment with limited ventilation and it can increase temperature, pressure and intensify fire. In this paper, with the method of Large Eddy Simulation and using Fire Dynamics Simulator, the behavior of the backdraft phenomenon in a closed enclosure is investigated. Changing the aspect ratio of opening, fuel injection from the combustion source and displacement of the combustion source are the three basic parameters whose effect on the dynamic and thermodynamic behavior of the backdraft to extinguish or delay it was investigated. The results indicate that if the fuel participates in reaction with a lower concentration, backdraft can occur at low pressures. By reducing the aspect ratio of opening, the time of occurrence of the backdraft phenomenon was delayed and was able to reduce the peak dynamic pressure resulting from this phenomenon by nearly 4 Pascals; However, due to the presence of semi-combustible materials, the possibility of a second backdraft occurred. Also, by displacement the combustion source and bringing it closer to the opening, it was observed that the backdraft phenomenon occurred on a smaller scale and it is possible to extinguish it completely.

Keywords


[1] Fleischmann CM (1994) Backdraft phenomenon. National Institute of Standards and Technology, USA, NIST-GCR-94-646.
[2] Fleischmann CM, McGrattan KB (1999) Numerical and experimental gravity currents related to backdrafts. Fire Safety J 33: 21-34.
[3] Gojkovic D (2000) Initial backdraft experiments. Department of Fire Safety  Engineering, Lund University, Sweden.
[4] Weng WG, Fan WC (2003a) Critical condition of backdraft in compartment fires: A reduced-scale experimental study. J Loss Prevent Proc 16(1): 19-26.
[5] Weng WG, Fan WC, Yang LZ, Song H, Deng ZH, Qin J, Liao GX (2003b) Experimental study of back-draft in a compartment with openings of different geometries. Combust Flame 132(4): 709-714.
[6] Wu J, Zhang Y, Gou X, Yan M, Wang E, Liu L (2011) Experimental research on gas fire backdraft phenomenon. Procedia Environ Sci 11: 1542-1549.
[7] Weng WG, Fan WC (2004) Nonlinear analysis of the backdraft phenomenon in room fires. Fire Safety J 39: 447-464.
[8] Yang R, Weng WG, Fan WC, Wang YS (2005) Subgrid scale laminar flamelet model for partially permixed combustion and its application to backdraft simulation. Fire Safety J 40(2): 81-98.
[9] Weng WG, Fan WC, Hasemi Y (2005) Prediction of the formation of backdraft in a compartment basedon large eddy simulation. Eng Computation 22(4): 376-392.
[10] Ferraris SA, Wen JX, Dembele S (2008) Large Eddy Simulation of the backdraft phenomenon. Fire Safety J 43(3): 206-225.
[11] Horvat A, Sinai Y (2007) Numerical simulation of backdraft phenomena. Fire Safety J 42(3): 200-209.
]12[ امیری پ، گنجی ر، افشین ح، فرهانیه ب (1392) بررسی عملکرد سناریوهای مختلف اطفاء حریق، برای یک محیط بسته با احتمال بروز پدیده بک­درفت. سومین همایش ملی تهویه و بهداشت صنعتی.
[13] Park JW, Oh CB, Choi BI, Han YS (2017) Computational study of backdraft dynamics and the effects of initial conditions in a compartment. J Mech Sci Technol 31(2): 985-993.
[14] Myilsamy D, Bo C, Choi BI (2019) Large eddy simulation of the backdraft dynamics in compartments with different opening geometries. J Mech Sci Technol 33(5): 1-13.
[15] Krol A, Krol M, Krawiec S (2020) A numerical study on fire development in a confined space leading to backdraft phenomenon. Energies 13(7): 1854.
[16] McGrattan K, McDermott R, Hostikka S, Floyd J, Weinschenk C, Overholt K (2015) Fire dynamics simulator (version 6.3.2) technical reference guide. NIST SP 1018-1.
[17] Forney GP (2015) User’s guide for smokeview version 6.3.2. A tool for visualizing fire dynamics simulation data. NIST Special Publication 1017-1.
[18] Turns SR (2000) An introduction to combustion: concepts and applications. McGrw-Hill.
]19[ جوشقانی م­ (1383) بررسی ساختارهای بزرگ حرکتی در پدیده جابجایی آزاد پلوم با استفاده از شبیه­سازی گردابه­ای بزرگ. دانشگاه صنعتی شریف.
[20] حیدری‌نژاد ق، پاسدارشهری هـ ، صفرزاده م (1399) اهمیت استفاده از مدل احتراقی و زیرشبکه         مناسب به‌منظور مدل‌سازی الگوی جریان در آتش استخری بزرگ‌مقیاس. نشریه مهندسی مکانیک امیرکبیر 2442-2425 :(9)52.
[21] خسروی‌الحسینی م، رحیم‌یار هریس د، درستی ق (1391) مقایسه روش‌های حل معادله انتقال تشعشع در مدلسازی مشعل متخلخل. مجله علمی پژوهشی مهندسی مکانیک مدرس 41-30 :(6)12.