Experimental Analysis on the Geometric Parameters of the Composite Metal Matrix Patch to Repair Cracked Aluminum Part

Authors

1 Ph.D. student. Department of Mechanic, Arak Branch, Islamic Azad University, Arak, Iran

2 Assistant Prof, Department of Mechanical engineering, Arak Branch, Islamic Azad University, Arak, Iran

3 Assistant Prof. Department of Mechanical engineering. Hamedan Branch. IslamicAzad University.Hamedan. iran

Abstract

Repairing cracked parts using patches is a common method to restore mechanical properties and tensile strength. The efficiency of such patches can be achieved by obtaining the maximum amount of force borne by the repaired part and comparing it with the non-repaired part. The purpose of this study is to investigate the diffusion method used in the repair of cracked aluminum parts and to evaluate the patches and fibers used. In this study, the diffusion method is used to connect the aluminum patch to repair the central crack in the aluminum thin sheet. Examination of microstructures showed that using the diffusion method, parts can be welded together and a suitable part can be obtained without the use of glue. The process of repairing cracked parts made of aluminum or its alloys in this study involves the use of three types of patches and different fibers and different conditions, and finally pressing the patch and the piece together under heat for a certain period of time. The repaired parts are subjected to quasi-static tensile loading and the maximum amount of force borne by the part is obtained in different states.

Keywords


 [1] Aryal B (2019) Effects of impact energy and impactor mass on the damage inducted in Composite laminates and sandwich panels. Compos Struct 154: 226-238.
[2] عالی ح (1388) آشنایی با فرایند ساخت و تولید. انتشارات دانشگاه امام حسین.
[3] تویسرکانی ح (1381) شکل دادن فلزات. مرکز نشر دانشگاه صنعتی اصفهان.
[4] عابدی م (1399) مشخصه سازی ابعادی ورق کامپوزیتی شیشه/‌اپوکسی با ترک لبه‌ای تحت سیکل‌های سرمایش/‌گرمایش مرطوب. مجله مکانیک سازه‌ها و شاره‌ها 231-219 :‌‌(3)10.
[5] فرهی غ (1376) مکانیک شکست. انتشارات دانشگاه بوعلی سینا.
[6] Sabelkin V (2006)  Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch. Eng Fract Mech 73(11): 1553-1567.
 [7] Tsouvalis G (2009) Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates. Int J Fatigue 31(10): 1613-1627.
 [8] Jones R (1999) Composite repairs to cracks in thick metallic components. Compos Struct 44(1): 17-29.
 [9] Kurt B (2007) Diffusiyon bonding between Ti-6Al-4 V alloy and ferritic stainless steel. Mater Lett 61: 1747-1750
[10] Mahendran G (2010) Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg–Al dissimilar joints. J Mater Eng Perform 19: 657-665
[11] Wei Y (2008) Formation process of the bonding joint in Ti/Al diffusion bonding. Mater Sci Eng A 480: 456-463
[12] Kenevisi M (2012) A study on the effect of bonding time on the properties of Al7075 to Ti–6Al–4 V diffusion bonded joint. Mater Lett 76:144-146
[13] Ismail A (2016) Fe-Al Diffusion Bonding: Effect of Reaction Time on The Interlayer Thickness. J Mech Eng 13(2): 10-20.
[14] Jafarian M (2016) The comparison of microstructure and mechanical properties of diffusion joints of 5754, 6061, and 7039 aluminum alloys to AZ31 magnesium alloy. Journal of Advanced Materials in Engineering 35(1): 11-21.
[15] Fernandus M (2011) Developing Temperature–Time and Pressure–Time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys. Mater Des 32(3): 1651-1656.
[16] Fernandus M (2012) Optimising diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ31B magnesium alloy joints. Mater Des 33: 31-41.
[17] تویسرکانی ح (1375) اصول علم مواد. مرکز نشر دانشگاه صنعتی اصفهان.